Tvorba a molekulární detekce somatických hybridů bramboru s vyšší odolností k plísní bramboru

Disertační práce

Doktorand: Ing. Vladimíra Sedláková
Školitel: Doc. Dr. Ing. Pavel Vejl
Školitel specialista: Ing. Petr Sedlák, Ph.D.

2010
Ráda bych touto cestou poděkovala mému školiteli Doc. Dr. Ing. Pavlu Vejlovi a školiteli specialistovi Ing. Petru Sedlákově, Ph.D. za jejich přátelský přístup, cenné informace, rady a tvůrčí myšlenky, které vedly k získání výsledků a k úspěšnému vypracování disertační práce. Dále bych chtěla poděkovat všem členům kolektivu Katedry genetiky a šlechtění za přínosné připomínky a náměty k zamyšlení, které obohatily tuto práci.

Můj dík patří také všem pracovníkům genové banky při Výzkumném ústavu bramborářském v Havlíčkově Brodě, s.r.o. za poskytnutí cenných informací, biologického materiálu, za realizaci infekčních testů a jejich hodnocení a za zařazení v této práci získaných somatických hybridů bramboru do kolekce genotypů v genové bance.

Výsledky byly získány s podporou projektu výzkumu a vývoje NAZV MZe ČR QF 4107 „Vývoj metod identifikace a charakterizace donorů rezistence k plísní bramboru z genofondu bramboru pomocí DNA markerů a biologického testu in vitro“; projektu FRVŠ 2232/06 „Inovace vybavení genetické laboratoře pro výuku předmětů zaměřených na aplikaci molekulární genetiky a biotechnologii v zemědělství“; výzkumného záměru MSM6046070901 „Setrvalé zemědělství, kvalita zemědělské produkce, krajinné a přírodní zdroje“ a interního grantu 21360/1312/3136 „Studium variability organelové DNA u vybraných diploidních druhů rodu Solanum pomocí nekódujících oblastí“.
Obsah

1 ÚVOD ... 14

2 LITERÁRNÍ PŘEHLED .. 15

2.1 ROD SOLANUM ... 15
 2.1.1 Taxonomické třídění .. 15
 2.1.2 Původ .. 15
 2.1.3 Cytogenetická charakteristika .. 16
 2.1.4 EBN (Endosperm balance number) .. 17

2.2 LÍLEK BRAMBOR (SOLANUM TUBEROSUM L.) ... 18
 2.2.1 Původ a historie .. 19
 2.2.2 Ekonomické aspekty pěstování bramboru v České republice 21
 2.2.3 Škodlivé faktory ovlivňující pěstování bramboru 22

2.3 PLÍSEŇ BRAMBORU ... 24
 2.3.1 Taxonomické zařazení .. 25
 2.3.2 Způsob rozmnážování .. 25
 2.3.3 Původ Phytophthora infestans ... 26
 2.3.4 Epidemiologie .. 27
 2.3.5 Fyziologické rasy Phytophthora infestans .. 28

2.4 ŠLECHTĚNÍ NA REZISTENCE K PLÍSNÍ BRAMBORU 29
 2.4.1 Specifická a nespecifická rezistence .. 30
 2.4.2 Hypersenzitivní a extrémní rezistence .. 31
 2.4.3 Řeny rezistence ... 31

2.5 VÝBRANÉ GENOVÉ ZDROJE REZISTENCE K PLÍSNÍ BRAMBORU A JEJICH
CHRÁRISTIKA ... 34
 2.5.1 Solanum bulbocastanum Dun. ... 34
 2.5.2 Solanum berthaultii Hawkes. ... 35
 2.5.3 Solanum pinnatisectum Bitt. ... 35
 2.5.4 Solanum polyadenium Greenm. ... 36
 2.5.5 Solanum microdontum Bitt. ... 36
 2.5.6 Solanum vernei Fírbas and Ross ... 36
 2.5.7 Solanum verrucosum Schlecht. ... 37

2.6 SOMATICKÁ HYBRIDIZACE BRAMBORU .. 37
 2.6.1 Protoplasty rostlin ... 37
 2.6.2 Historie protoplastových kultur ... 38
 2.6.3 Fúze protoplastů ... 39

2.7 MOŽNOSTI DETEKCE SOMATICKÝCH HYBRIDŮ 40
 2.7.1 Morfologické a cytologické metody detekce somatických hybridů .. 40

2.8 BIOCHEMICKÉ METODY DETEKCE SOMATICKÝCH HYBRIDŮ 42
 2.8.1 Steroidní glykoalkaloïdy ... 42

2.9 MOLEKULÁRNÍ GENETICKÉ METODY DETEKCE SOMATICKÝCH HYBRIDŮ 45
 2.9.1 Charakteristika rostlinného genomu .. 45
 2.9.2 Genom somatického hybrida .. 46
 2.9.3 Analýza DNA ... 47
 2.9.4 Detekce somatických hybridů pomocí transgenů 47

3 VĚDECKÉ HYPOTÉZY ... 48

4 CÍLE PRÁCE ... 49

5 MATERIÁL A METODY .. 50

5.1 ROSTLINNÝ MATERIÁL ... 50

5.2 OPTIMALIZACE METOD ISOLOACE PROTOPLASTŮ 51
 5.2.1 Izolace protoplastů z mezofylu listů .. 51
 5.2.2 Vliv složení médií pro kultivaci výchozího materiálu na výtěžnost a viabilitu protoplastů 52
5.3 Výběr výchozího materiálu vhodného pro somatickou hybridizaci ..53
5.3.1 Fenotypové zhodnocení odolnosti klonů k Phytophthora infestans53
5.3.2 Výběr vhodných genotypů z hlediska izolace protoplastů ..54
5.4 Tvorba somatických hybridů ..54
5.4.1 Fúze protoplastů ...54
5.4.2 Kultivace a regenerace protoplastových kultur ..55
5.5 Analýzy DNA pro detekci somatických hybridů ...56
5.5.1 RAPD analýza ..56
5.5.2 Analýza jaderné DNA ...56
5.5.3 Analýza chloroplastového a mitochondriálního DNA ...57
5.5.3.1 Výběr vhodných univerzálních primerů ..57
5.5.3.2 Optimalizace podmínek amplifikace ..58
5.5.3.3 Detekce variability ...58
5.5.3.4 Stanovení sekvenčně vybraných markerů ...60
5.6 Detekce somatických hybridů ...60
5.6.1 Morfologické a cytologické metody detekce somatických hybridů61
5.6.1.1 Morfologické hodnocení ..61
5.6.1.2 Detekce stupně ploidie ..61
5.6.2 Molekulárně genetické metody detekce somatických hybridů ..63
5.6.2.1 RAPD analýza ..63
5.6.2.2 Analýza chloroplastového markeru Cp4 ..63
5.7 Charakteristika vybraných vlastností somatických hybridů z hlediska využitelnosti ve slechtění bramboru ..63
5.7.1 Fenotypové zhodnocení odolnosti somatických hybridů k Phytophthora infestans63
5.7.2 Tvorba a výnosový potenciál hlíz ..64
5.7.3 Předpoklady pro sexuální křížení ...64
5.7.3.1 Viabilita pylových zrn ...64
5.7.4 Orientační stanovení obsahu solaninu a chaconinu v hlízách ..65
6 Výsledky a diskuze ..66
6.1 Optimalizace metod izolace protoplastů ..66
6.1.1 Izolace protoplastů z mezofylu listů ...66
6.1.2 Vliv složení médií pro kultivaci výchozího materiálu na výtěžnost a viabilitu protoplastů .67
6.2 Výběr výchozího materiálu vhodného pro somatickou hybridizaci71
6.2.1 Fenotypové zhodnocení odolnosti klonů k Phytophthora infestans71
6.2.2 Výběr vhodných genotypů z hlediska izolace protoplastů ...72
6.3 Tvorba somatických hybridů ..74
6.3.1 Fúze, kultivace a regenerace protoplastových kultur ...74
6.4 Analýzy DNA pro detekci somatických hybridů ...77
6.4.1 RAPD analýza ..77
6.4.1.1 Detekce somaklonální variability ..80
6.4.2 Analýza jaderné DNA ..81
6.4.3 Analýza chloroplastového a mitochondriálního DNA ..83
6.4.3.1 Optimalizace podmínek amplifikace ..83
6.4.3.2 Detekce variability ...84
6.4.3.3 Stanovení sekvenčně vybraných markerů ...94
6.5 Detekce somatických hybridů ..102
6.5.1 Morfologické a cytologické metody detekce somatických hybridů102
6.5.1.1 Morfologické hodnocení ...102
6.5.1.2 Detekce stupně ploidie ..107
6.5.2 Molekulárně genetické metody detekce somatických hybridů112
6.5.2.1 RAPD analýza ..112
6.5.2.2 Analýza chloroplastového markeru Cp4 ..113
6.6 Charakteristika vybraných vlastností somatických hybridů z hlediska využitelnosti ve slechtění bramboru ..114
6.6.1 Fenotypové zhodnocení odolnosti somatických hybridů k Phytophthora infestans ...114
6.6.2 Tvorba hlíz a výnosový potenciál ..115
6.6.3 Předpoklady pro sexuální křížení ...121
6.6.3.1 Viabilita pylových zrn ...122
6.6.4 Orientační stanovení obsahu solaninu a chaconinu v hlízách .. 125

7 ZÁVĚR ... 130

8 PŘEHLED CITOVANÉ LITERATURY ... 132

 8.1 CITACE INTERNETOVÝCH PUBLIKACÍ ... 157
 8.2 INTERNETOVÉ DATABÁZE ... 157

9 PŘÍLOHY ... 158
Přehled obrázků

Obrázek 1: Schéma průtokové komory (upraveno dle Doležel et al., 2007)41
Obrázek 2: Biochemická syntéza steroidních glykoalkaloidů α – solaninu a α – chaconinu (upraveno dle Krits et al., 2007) ...45
Obrázek 3: Graf závislosti koncentrace uvolněných protoplastů na čase během působení celulolytických enzymů ..66
Obrázek 4: Solanum bulbocastanum PIS 54 kultivované in vitro na mědiu s koncentrací Alaru 85 5 mg.l\(^{-1}\) s AgNO\(_3\) 7,5 mg.l\(^{-1}\) (vpravo) a 0 mg.l\(^{-1}\) (vlevo)..71
Obrázek 5: Shluková analýza genotypů na základě amplifikace RAPD markerů primerem OPN 18 ..78
Obrázek 6: Detekce polymorfismů DNA genotypů rodu Solanum primerem OPN 1179
Obrázek 7: Shluková analýza genotypů na základě RAPD markerů (primer OPN 11)79
Obrázek 8: Morfologické porovnání S. pinnatisectum PI275235 (vlevo) a S. polyadenium PI310963 (vpravo) ...80
Obrázek 9: Detekce somaklonální variability sadou RAPD primerů OPN81
Obrázek 10: Detekce polymorfismů jaderné DNA u genotypů rodu Solanum restrikčním štěpením produktů CAPS markeru SPUD237 enzymem AluI82
Obrázek 11: Detekce polymorfismů jaderné DNA u genotypů rodu Solanum restrikčním štěpením produktů CAPS markeru GP21 enzymem AluI83
Obrázek 12: Variabilita PCR produktů markeru Cp3 (trnL/trnL)84
Obrázek 13: Restrikční štěpení PCR produktu markeru Mt5 (cox1/cox1) enzymem HinfI ...86
Obrázek 14: Restrikční štěpení PCR produktu markeru Cp3 (trnL/trnL) enzymem BsuRI (HaeIII) ...87
Obrázek 15: Detekce polymorfismů mtDNA u genotypů rodu Solanum markerem Mt3 (rrn5/rrn18-1) pomocí metody SSCP ...88
Obrázek 16: Elektroforeogram perpendikulárního gelu pro analýzu PCR produktů markeru Mt3 (rrn5/rrn18-1) ...89
Obrázek 17: Elektroforeogram perpendikulárního gelu pro analýzu PCR produktů markeru Cp4 (trnL/trnF) ...90
Obrázek 18: Elektroforeogram perpendikulárního gelu pro analýzu PCR produktů markeru Cp7 (trnV/16SrRNA) ...91
Obrázek 19: Variabilita PCR produktů markeru Cp4 (trnL/trnF) detekovaná pomocí CDGE analýzy ...92
Obrázek 20: Dendrogram sestavený na základě podobnosti PCR produktů markeru Cp4 (trnL/trnF) analyzovaných metodou CDGE ... 93
Obrázek 21: Variabilita PCR produktů markeru Cp7 (trnV/16SrRNA) detekovaná pomocí CDGE analýzy ... 94
Obrázek 22: Výsledky sekvenace produktů markeru Cp3 ... 98
Obrázek 23: Výsledky sekvenace produktů markeru Cp4 .. 100
Obrázek 24: Morfologické srovnání genotypů ve skleníkovém pokusu, dihaploid S. tuberosum ssp. tuberosum 165 (vlevo), S. bulbocastanum PIS 66 (vpravo) a jejich somatický hybrid (uprostřed) .. 103
Obrázek 25: Morfologické srovnání genotypů v polním pokusu, a) a b) S. bulbocastanum PIS 17 (2n) a REG 5 (4n); c) dihaploid S. tuberosum ssp. tuberosum 165 (2n); d), e) a f) somatické hybridy REG 30 F, REG 34 F a REG 43 F (všechny 4n) 104
Obrázek 26: Morfologické srovnání listů .. 105
Obrázek 27: Morfologické srovnání květů, a), b) somatický hybrid REG 43 F; c), d) Solanum bulbocastanum PIS 61; e), f) dihaploid S. tuberosum ssp. tuberosum 165 106
Obrázek 28: Výstup cytologického vyšetření genotypu Solanum bulbocastanum PIS 61 (2n) získaný z průtokového cytometru Partec PAS (Německo). Dva píky představují obsah DNA v jádrech v G1 a G2 fázi buněčného cyklu ... 109
Obrázek 29: Výstup cytologického vyšetření genotypu somatického hybrida REG 50 F (4n) získaný z průtokového cytometru Partec PAS (Německo). Dva píky představují obsah DNA v jádrech v G1 a G2 fázi buněčného cyklu ... 110
Obrázek 30: Výstup analýzy rozptylu dvojného třídění dokumentující rozdíly mezi měřenými hodnotami stomatárních buněk rostlin s různým počtem chromozomů 111
Obrázek 31: Porovnání velikosti svěracích buněk průduchu a počtu chloroplastů v těchto buněkách u diploidního a tetraploidního genotypu .. 112
Obrázek 32: RAPD analýza PCR produktů primeru OPN 11 u somatických hybridů a jejich rodičovských komponent ... 113
Obrázek 33: Výsledky sekvenace produktů markeru Cp4 pro detekci dědičnosti cytoplasmy u somatických hybridů ... 114
Obrázek 34: Jednoletý polní pokus na pokusném poli České zemědělské univerzity v lokalitě Praha 6 – Suchdol ... 118
Obrázek 35: Morfologické srovnání hlíz ... 119
Obrázek 36: Sklizeň hlíz v polním pokusu dne 20.10.2009; a) dihaploid *S. tuberosum* ssp. *tuberosum* DH 165; b) somatický hybrid REG 43 F; c) *Solanum bulbocastanum* PIS 61

Obrázek 37: Viabilita pylových zrn stanovená barvením Lugolovým roztokem; a) *S. bulbocastanum* REG 5 (4n); b) somatický hybrid REG 43 F (4n)

Obrázek 38: Hlíza somatického hybrida REG 43 F

Obrázek 39: Souhrnná analýza obsahu solaninu a chaconinu u genotypu *Solanum bulbocastanum* PIS 61 metodou kapalinové chromatografie. Největší peak interpretuje celkový obsah solaninu a chaconinu v hlízách v čerstvém stavu

Obrázek 40: Souhrnná analýza obsahu solaninu a chaconinu u genotypu somatického hybrida REG 44 F metodou kapalinové chromatografie. Největší peak interpretuje celkový obsah solaninu a chaconinu v hlízách v čerstvém stavu
Přehled tabulek

Tabulka 1: Procentické zastoupení odrůd bramboru v jednotlivých stupních ranosti z hlediska odolnosti k plísni bramboru v nati a v hlízách (Čermák, 2010)

Tabulka 2: Dosud popsané majorgeny rezistence bramboru k Phytophthora infestans

Tabulka 3: Sekvence primerů CAPS markerů GP21 a SPUD 237

Tabulka 4: Složení reakční směsi pro markery SPUD237 a GP21

Tabulka 5: Podmínky průběhu PCR reakcí markerů SPUD237 a GP21

Tabulka 6: Charakteristika vybraných cpDNA a mtDNA primerů

Tabulka 7: Analýza rozptylu hlavních efektů vyhodnocená komplexně pro všechny měřené znaky

Tabulka 8: Podrobné vyhodnocení Tukeyho metodou, kde proměnná je průměrná délka rostliny a třídícím faktorem druh

Tabulka 9: Podrobné vyhodnocení Tukeyho metodou, kde proměnná je průměrná délka rostliny a třídícím faktorem koncentrace Alaru 85 a AgNO₃

Tabulka 10: Podrobné vyhodnocení Tukeyho metodou, kde proměnná je průměrný počet listů na 1 rostlině a třídícím faktorem druh

Tabulka 11: Podrobné vyhodnocení Tukeyho metodou, kde proměnná je průměrná hmotnost čerstvé biomasy na 1 cm délky rostliny a třídícím faktorem koncentrace Alaru 85 a AgNO₃

Tabulka 12: Statistické hodnocení infekčních testů u 66 genotypů Solanum bulbocastanum

Tabulka 13: Seznam genotypů vybraných pro somatickou hybridizaci na základě infekčních testů odolnosti vůči Phytophthora infestans

Tabulka 14: Počet a původ rostlin vzniklých in vitro regenerací z protoplastových kultur

Tabulka 15: Výsledky restrikčního štěpení mtDNA a cpDNA markerů (štěpení při 37°C)

Tabulka 16: Vybrané charakteristiky analyzovaných druhů rodu Solanum

Tabulka 17: Výsledky stanovení stupně ploidie metodou průtokové cytometrie

Tabulka 18: Orientační hodnocení výnosového potenciálu hlíz somatických hybridů v polních pokusech v letech 2009 a 2010

Tabulka 19: Viabilita pylových zrn stanovená barvením Lugolovým roztokem

Tabulka 20: Statistické hodnocení viability pylu analýzou rozptylu jednoduchého třídění

Tabulka 21: Hodnoty obsahu solaninu a chaconinu v hlízách
Přehled příloh

Příloha 1: Druhy rodu Solanum: S. bulbocastanum, S. microdontum, S. pinnatisectum a S. polyadenium ... 158

Příloha 2: Druhy rodu Solanum: S. berthaulti, dihaploid S. tuberosum ssp. tuberosum, S. vernei a S. verrucosum ... 159

Příloha 3: Chemické složení roztoků pro izolaci, kultivaci a regeneraci protoplastových kultur modifikovaných dle Cheng a Saunders (1995) 160

Příloha 4: a) protoplasty před čištěním; b) test viability; c) Bürkerova počítací komůrka; d) prstenec nativních protoplastů .. 161

Příloha 5: a) Phytophthora infestans; b) infekční testy in vitro rostlin; c) infekční testy metodou listových terčíků; d) detail nekrózy na listu .. 162

Příloha 6: a) elektroporátor BTX; b) Petriho miska s fúzní komorou; c) řetízkování protoplastů; d) fúzované protoplasty 15 minut po elektrofúzi 163

Příloha 7: Izolace DNA pomocí DNeasy Plant Mini Kit (Qiagen, SRN) ... 164

Příloha 8: Koncentrace uvolněných protoplastů z 1 g navážky z mezofylu listů při působení celulolytických enzymů ... 165

Příloha 9: Výsledky hodnocení růstových parametrů rostlin při charakterizaci vlivu složení kultivačních médií ... 166

Příloha 10: Výsledky hodnocení parametrů izolace protoplastů rostlin při charakterizaci vlivu složení kultivačních médií ... 167

Příloha 11: Výsledky infekčních testů metodou listových terčíků ... 168

Příloha 12: Regenerace protoplastových kultur: a) 12. den; b) 14. den; c) 20. den; d) 70. den; e) 145. den a f) 165. den kultivace ... 170

Příloha 13: a) S. bulbocastanum 66; b) dihaploid S. tuberosum ssp. tuberosum 165; c) somatické hybridy vzniklé jejich fúzi; d) a e) somatický hybrid REG 28 starý 14 a 30 dnů .. 171

Příloha 14: Charakterizace 25 parametrů u rostlin v polním pokusu pomocí klasifikátoru pro rod Solanum (Vidner et al., 1987) ... 172

Příloha 15: Výsledky měření délky svěrácních buněk průduchů a stanovení počtu chloroplastů u somatického hybrida REG 34 F (4n) ... 174

Příloha 16: Výsledky měření délky svěrácních buněk průduchů a stanovení počtu chloroplastů u genotypu Solanum bulbocastanum PIS 17 (2n) ... 175
Příloha 17: Výsledky měření délky svěracích buněk průduchů a stanovení počtu chloroplastů u dihaploidního genotypu *Solanum tuberosum* ssp. *tuberosum* DH 387 (2n).......176

Příloha 18: Výsledky měření délky svěracích buněk průduchů a stanovení počtu chloroplastů u genotypu *Solanum tuberosum* ssp. *tuberosum* R10 (4n)177

Příloha 19: Hodnocení vybraných parametrů hlíz z polního a skleníkového pokusu pomocí klasifikátoru pro rod *Solanum* (Vidner *et al.*, 1987) ...178
Seznam použitých zkratek

ATP = adenosintrifosfát
CAPS = Cleaved Amplified Polymorphic Sequence (délkový polymorfismus restrikčně štěpené amplifikované DNA)
CDGE = Constant Denaturing Gel Electrophoresis (konstantní denaturační gelová elektroforéza)
CMS = Cytoplasmic Male Sterility (cytoplasmatická pylová sterilita)
Cms = Clavibacter michiganensis ssp. sepedonicus, původce bakteriální kroužkovitosti bramboru
cpDNA = deoxyribonukleová kyselina uložená v chloroplastech
DAPI = 4-6-diamidin-2-phenylindol (C₁₆H₁₅N₅O₂), modré fluorescenční barvivo
DGGE = Denaturing Gradient Gel Electrophoresis (denaturační gradientová gelová elektroforéza)
dNTP = deoxynukleotid-5´-trifosfát (obecně)
EBN = Endosperm Balance Number
EDTA = ethylenediamintetraoctová kyselina
ETS = External Transcribed Spacer (vnější přepisovaný mezerník)
EU = Evropská unie
EVIGEZ = Evidence genových zdrojů
FAO = Food and Agriculture Organization
GMO = geneticky modifikovaný organismus
GTP = guanosintrifosfát
HMGR = 3-hydroxy-3-methylglutaryl koenzym A reduktáza
LGT agarose = Low Gelling Temperature agarose (agaróza polymerizující při nízkých teplotách)
IRa, IRb = dvě dlouhé invertované repetice chloroplastové DNA
LRR = Leucine-Rich Repeat sequence (repetitivní sekvence bohalé na triplety kodující aminokyselinu leucin)
LSC = Large Single Copy (rozsáhlá oblast v chloroplastové DNA obsažená pouze v jedné kopii)
LZ = leucinový zip
mtDNA = deoxyribonukleová kyselina uložená v mitochondriích
NBS = Nucleotide Binding Site (nukleotidové vazebné místo)
ORF = Open Reading Frame (otevřený čtecí rámec)
PCR = Polymerase Chain Reaction (polymerázová řetězová reakce)
PEG = polyethylenglykol
PLVR = Potato Leaf-Roll Virus (virus svinutky Bramboru)
PSS1 = skvalen syntáza
PVA = Potato Virus A
PVM = Potato Virus M
PVS = Potato Virus S
PVS1 = vetispiradien (seskviterpen) cykláza
PVX = Potato Virus X
PVY = Potato Virus Y
RAPD = Random Amplified Polymorphic DNA (náhodná amplifikace polymorfní DNA)
RFLP = Restriction Fragment Length Polymorphism (délkový polymorfismus restrikčních fragmentů)
RuBP = ribulósá-1,5-bisfosfát karboxyláza
SGT1 = solanidin galaktosyltransferáza
SGT2 = solanidin glukosyltransferáza
SGT3 = rhamnosyltransferáza
SMT1 = sterol C24-methyltransferáza typu 1
SNP = Single Nucleotide Polymorphism (jednonukleotidový polymorfismus)
SSC = Small Single Copy (malá oblast v chloroplastové DNA obsažená pouze v jedné kopii)
SSCP = Single Strand Conformation Polymorphism (detekce jednovláknového konformačního polymorfismu)
TAE = Trisacetátový pufr (SAMBROOK et al., 1989)
Taq polymeráza = termostabilní DNA polymeráza bakterie Thermus aquaticus
TBE = tris-borátový pufr (SAMBROOK et al., 1989)
TE = Tris-EDTA pufr (SAMBROOK et al., 1989)
UPGMA = Unweighted Pair Group Method with Arithmetic averages (metoda párování pomocí nevážených aritmetických průměrů)
VB = Velká Británie
1 ÚVOD

Brambory jsou celosvětově čtvrtou nejvýznamnější plodinou z hlediska lidské výživy. Jako potravina mají širokou oblast využití, která je národnostně specifiká. Brambory dále představují strategickou surovinu pro výrobu škrobu, který v Evropské unii podléhá, stejně jako cukr, produkčním kvótám.

Jako jakákoli jiná zemědělská plodina je i brambor napadán řadou chorob a škůdců. Celosvětově ekonomicky nejdůležitější a nejškodlivější chorobou je plíseň bramboru, jejímž původcem je oomycesta Phytophthora infestans. Nejpoužívanější a nejúčinnější ochranou proti ní je použití chemické ochrany, která je finančně náročná a její nadměrné používání vede k zatěžování životního prostředí a zemědělských produktů rezidui fungicidů. Vzhledem k tomu, že současným celosvětovým trendem je program integrované ochrany rostlin, je snaha chemickou ochranu omezovat na ekonomicky a ekologicky únosnou úroveň. S tímto trendem se posiluje postavení rezistentního šlechtění u naprosté většiny zemědělských plodin.

V rezistentním šlechtění bramboru jsou často využívány genetické zdroje rodu Solanum, které nejsou mnohdy s kulturním bramborem v přímém fylogenetickém vztahu, ale poskytují široké spektrum genů rezistence k celé řadě klíčových chorob a škůdců. Obecně je však šlechtění bramboru na odolnost k patogenům často kombinováno neschopností vybraných kombinací rodičů poskytnout vitální potomstvo s odpovídající úrovní požadované rezistence k patogenu. Jisté možnosti v této oblasti přínáší využití technik elektrochemické fúze rostlinných protoplastů, které se uplatňují v dalších oblastech vědy a výzkumu. Při získávání somatických hybridů je také nezbytná jejich detekce. Morfologicko-anatomická identifikace umožňuje specifikovat genotyp pouze orientačně. Metody molekulární analýzy DNA představují jednu z možností detekce nejen somatických hybridů. V současné době se nabízí celá řada molekulárně genetických metod umožňujících studium rostlinné DNA na úrovni jaderné i organelové DNA.

Tato práce se zabývá tvorbou a detekcí somatických hybridů bramboru, jež mohou vznikat fúzi bramboru s nekulturními druhy rodu Solanum jako donory genů rezistence k Phytophthora infestans a následnou regenerací protoplastových kultur. Výsledky fúze protoplastů mohou být vysoce variabilní. Může docházet k homofúzi nebo heterofúzi (jader i cytoplasmy) nebo jenom určitých buněčných částí. Proto je potřebné z hlediska zachycení možných rekombinací analyzovat somatické hybridy komplexně po všech stránkách – morfologické, cytologické i molekulárně genetické.
2 LITERÁRNÍ PŘEHLED

2.1 Rod Solanum

2.1.1 Taxonomické třídění

V rámci rodu Solanum je definován podrod Potatoe obsahující sekci Petota, která je ekonomicky nejdůležitější sekci rodu. Druhy patřící do sekce Petota jsou rozšířené v oblasti od jihozápadu USA až po jižní Chile a Argentinu. Sekce Petota je dále rozdělena na dvě subsekce.

Druhá subsekce se nazývá Potatoe G. Don a zahrnuje jeden netuberizující a 224 tuberizujících druhů rozdělených do 19 sérií (Morelliformia, Bulbocastana, Pinnatisecta, Polyadenia, Commersoniana, Circaeifolia, Lignicaulia, Olmosiana, Yungasensa, Megistacroloba, Cuneolata, Conicibaccata, Piurana, Ingifolia, Maglia, Tuberosa planá, Tuberosa kulturní, Acaulia, Longipedicellata a Demissa). Druhy tvořící hlízy byly ještě dodatečně rozděleny na dvě subsérie Stellata a Rotata podle typu květní koruny (Hawkes, 1994).

2.1.2 Původ

Existují dvě geografická centra diverzity nekulturních brambor, Mexiko a Jižní Amerika (Peru, Bolívie, severní Argentina) (Hijmans a Spooner, 2001). Mexiko je tradičně přijímáno jako místo původu tuberizujících brambor z důvodu, že jsou zde koncentrovány morfologicky nejprimitivnější druhy, pro něž je charakteristické 1EBN (Endosperm Balance.

2.1.3 Cytogenetická charakteristika

Cytogenetické poměry druhů rodu *Solanum* jsou velmi pestré. Základní počet chromozómů je n = 12 (Hawkes a Hjerting, 1969). U rodu *Solanum* se vyskytuje okolo 70 % diploidních, 15 % tetraploidních a 8 % hexaploidních druhů. Umělou indukcí polyploidie se podařilo získat formy až 12n (2n = 144).

Většina diploidních druhů je autosterilní, respektive autoinkompatibilní, a proto jsou allogamní a entomofilní. Část diploidních druhů je autofertilní. Triploidní druhy mají autotriploidní a allotriploidní povahu. To svědčí o rozdílném způsobu jejich vzniku, který
vede v každém případě ke sterilitě. Jejich existence se zabezpečuje vegetativním rozmnožováním. Tetraplojdní druhy jsou autofertilní, respektive autokompatibilní, některé allogamní.

Celý rod Solanum se vyznačuje značnou homologií genomů, a proto je relativně snadná syntéza diploidních, tetraploidních a hexaploidních genomů do fertilních hybridů (Hraška et al., 1989).

2.1.4 EBN (Endosperm balance number)

V současné době je snaha rozšiřovat genofond bramboru o nové geny rezistence proti chorobám a škůdcům pomocí vzdálené hybridizace. Brambory jsou plodinou se zřejmě největším rozsahem genetické diverzity, obsažené v příbuzných nekulturních druzích rodu Solanum (Hawkes a Jackson, 1992). U tuberizujících druhů rodu Solanum je tok genů limitován vnitřními bariérami omezujícími křížitelnost. Tyto bariéry lze rozdělit do dvou skupin: (1) pre-zygotická bariéra, která je založena na mechanismu tzv. pylovo – pestíkové inkompatibility (Grun a Aubertin, 1966) a (2) post-zygotická bariéra, kde hraje jednu z nejdůležitějších roli endosperm (Johnston et al., 1980).

Hodnota EBN koreluje s předpokládanou evolucí a současnou taxonomií tuberizujících druhů bramboru (Hawkes a Jackson, 1992). V rámci rodu Solanum se vyskytují tři skupiny druhů, lišící se v tomto ukazateli o stavu endospermu. Tyto skupiny se na první pohled liší například uspořádáním květní koruny (Hawkes, 1994). Mexické i jihoamerické druhy patřící do skupiny primitivní Stellata kvetou bíle a je pro ně charakteristické 1EBN. Evoluce typu květní koruny charakteristické pro skupinu Rotata je pravděpodobně spojena s endospermem typu 2EBN, který vznikl v Jižní Americe (Hawkes a Jackson, 1992).

Lilek brambor (Solanum tuberosum ssp. tuberosum) patří do skupiny 4EBN a je dle této teorie nejlépe křížitelný s autotetraploidními druhy S. gourlai, S. sucrense, S. tuberosum ssp. andigena a allohexaploidy ze série Demissa (S. demissum). Většina allotetraploidních
druhů rodu Solanum přísluší k 2EBN, diploidní druhy vykazují ve většině případů příslušnost k 1EBN. Druhy s 1EBN se snadno kříží v rámci skupiny, mimo ni pouze vzácně. Po snížení tetraploidního počtu chromozómů bramboru S. tuberosum ssp. tuberosum se snižuje rovněž EBN, což je výhodné při vzdálené hybridizaci s 2EBN druhy (Hawkes, 1994).

Ve vztahu k výše uvedenému je EBN pouze jednou ze součástí komplexního systému regulace mezidruhové hybridizace v rámci rodu Solanum (Masuelli a Camadro, 1997). Dalším faktorem, který kromě EBN ovlivňuje evoluci polyploidních druhů je tvorba tzv. 2n gamet. Tyto gamety mají počet chromozómů shodný se somatickou buňkou a vznikají v důsledku modifikované meiozy, která ovlivňuje specifická stádia mikro a megasporogeneze (Carputo et al., 2003). Vzájemné splývání 2n gamet vede ke vzniku tetraploidních genotypů (Laptev, 1988).

2.2 Lilek brambor (Solanum tuberosum L.)

Brambory patří mezi nejdůležitější polní plodiny na světě. Lilek brambor, brambor obecný (Solanum tuberosum L.) je řazen do čeledi lilkovité (Solanaceae Pers.), rodu lilek (Solanum Tourn.), podrodu Potatoe, sekce Petota, subsecké Potatoe a série Tuberosa. Z genetického hlediska se jedná o autotetraploid (2n = 4x = 48), který prošel dlouhodobým vývojem po mezidruhové hybridizaci (Slavík et al., 2000; Bradshaw a Mackay, 1994).

Archeologické pozůstatky brambor byly radiokarbonovou metodou datovány do doby před 7000 lety, je však pravděpodobně, že brambory byly domestikovány ještě před tímto datem (Hawkes, 1994). V průběhu rané domestikace se předpokládá, že došlo ke křížení druhů Solanum leptophyes a S. canasense. Člověk v této době začal provádět negativní selekce zaměřené na vyloučení rostlin s hořkými hlízami bohatými na toxické alkaloidy. Tímto způsobem pak vznikaly první kulturní diploidní druhy, jako je například Solanum stenotomum. Předpokládá se, že křížením S. stenotomum x S. sparsipilum nebo S. stenotomum x neznámý hybrid a následnou diploidizací genomu na tetraploidní úroveň vznikl druh S. tuberosum ssp. andigena (Bradshaw and Mackay, 1994). Solanum tuberosum ssp. tuberosum pravděpodobně pocházel z křížení spp. andigena jako donora pylu s neznámým nekulturním druhem, který měl v mitochondriích kódovány faktory pro cytoplasmatickou pylovou sterilitu anebo měl výrazně se odlišující typ plastidové DNA (Grun, 1990).

Naprostá většina současných odrůd bramboru botanicky přísluší k poddruhu tuberosum. Existují i odrůdy taxonomicky řazené k poddruhu Solanum tuberosum ssp. andigena nebo ke druhu Solanum chacoense. Těchto odrůd je však malý počet a svůj význam
mají zejména v oblastech Jižní Ameriky jako donory různých vlastností v hybridizačních programech (Rybáček et al., 1988).

2.2.1 Původ a historie

Kulturní brambor (Solanum tuberosum L.) zahrnuje vysoce variabilní skupinu moderních odrůd, které se pěstují po celém světě (Spooner et al., 2005). Vavilov ve své studii o původu kulturních rostlin z roku 1928 prokázal, že centrum původu kulturních plodin bylo nalezeno v těch oblastech, kde byla nejvyšší diverzita, a kde byl nalezen největší počet endemických znaků (Hawkes, 1944). Z tohoto důvodu je původ kulturního bramboru kladen do Jižní Ameriky, kde Vavilov stanovil dvě genová centra, první andské v Peru a Bolívii a druhé v oblasti Chile (Hruška et al., 1974).

Druhé centrum – chiloánské – leží v oblasti Chile na ostrově Chiloé v oblasti 40° j.š. Zde jsou podmínky dlouhého dne s mírnými zimami a chladnými léty, přímořské klima s vysokými srážkami, vysokou vzdušnou vlhkostí a nižšími teplotami (Hruška et al., 1974).

Existují dvě hypotézy o oblasti původu prvních brambor introdukovaných do Evropy. Juzepczuk a Bukasov (1929) navrhovali Chile (skupina Chilotanum). Tato hypotéza byla dokládána morfologickou podobností mezi chilským a evropským bramborem a jejich adaptabilitou na dlouhou délku dne.

Salaman (1937) navrhl andskou oblast (skupina Andigenum). Tuto hypotézu podporovala většina autorů. Hawkes (1944) uvádí, že kulturní brambor pochází od jezera

Krajové odrůdy bramboru z těchto dvou oblastí mohou být odlišitelné, ačkoliv někdy obtížně, pomocí faktorů cytoplasmatické pylové sterility - CMS (Cytoplasmic Male Sterility), morfologie, adaptace na délku dne, mikrosatelitních markerů a markerů chloroplastové (cp) a mitochondriální (mt) DNA (Spooner et al., 2005). Hosaka (1995) prokázal pomocí analýzy restriktivně štěpené chloroplastová DNA u diploidních kulturních a nekulturních druhů rodu Solanum rozsáhlý polymorfismus ve všech taxonech. To znamená, že andské diploidní kulturní brambory byly domestikovány mnohokrát z nekulturních druhů s následnou sexuální polyploidizací za vzniku tetraploidních kulturních brambor. Chilské přirozené variety tetraploidního Solanum tuberosum byly pravděpodobně selektovány z omezené podskupiny genofondu andských tetraploidních brambor někde blízko bolivijské a argentinské hranice.

Ríos et al. (2007) ověřovali obě hypotézy, andskou a chilskou, pomocí analýzy jaderných mikrosatelitů a chloroplastové DNA u krajových odrůd Kanárských ostrovů. Byla zde detekována široká variabilita andských a chilských kultivarů i jejich možných hybridů. Tato data ve spojení s historickými, molekulárními, agronomickými daty a daty z křížení vedou k vyslovení hypotézy, že na Kanárských ostrovech proběhla mnohonásobná introdukce andského i chilského genofondu, a že tedy první evropské brambory byly selektovány
z rostlin introdukovaných z chilské oblasti dávno předtím, než vypukla epidemií plísně bramboru v roce 1840. Obdobnými metodami byly testovány indické odrůdy, u kterých se předpokládalo, že jsou odvozeny pouze z andských krajových odrůd. Výsledky prokazují přítomnost cp DNA typické pro andské i chilské krajové odrůdy, popřípadě jejich hybridy (Spooner et al., 2005).

2.2.2 Ekonomické aspekty pěstování bramboru v České republice

V roce 2009 bylo v ČR podle údajů ČSÚ sklizeno celkem 36 722 ha brambor, z toho v zemědělském sektoru 28 734 ha a v rámci samozásobení domácností 7 988 ha. Celková produkce brambor dosáhla 928,8 tis. t. V zemědělském sektoru bylo sklizeno 752,5 tis. t. a v sektoru domácností 176,3 tis. t. První známky v roce 2008 se jednalo o meziroční pokles o 1,7 %, konkrétně o 16,5 tis. t. Celkovou nižší sklizení brambor ovlivnilo především snížení osazených ploch brambor proti předchozímu roku o 1 094 ha, tj. pokles o 2,9 %. Průměrný hektarový výnos v roce 2009 25,29 t.ha⁻¹ byl srovnatelný s rokem 2008 25,00 t.ha⁻¹. Spotřeba brambor na obyvatele činila v roce 2008 přibližně 62,1 kg na osobu, přičemž ještě v předchozích letech 2000 až 2005 spotřebovali průměrný Čech v průměru 74,4 kg brambor za rok. V České republice, stejně jako ve většině vyspělých zemí klesá spotřeba syrových brambor ke kuchyňské přípravě a je doplňována vysokou nabídkou polotovarů i hotových bramborových výrobků. Podle předběžných údajů tvoří brambory spotřebované na výrobky a polotovary již 43 % z celkové spotřeby brambor v lidské výživě.

Do uznávacího řízení bylo v roce 2008 přihlášeno 209 odrůd. Na ploše větší než 100 ha se však pěstovalo pouze 8 odrůd (Adéla, Dali, Impala, Magda, Marabel, Ornella, Princess a Rosara). V roce 2009 došlo oproti roku 2008 ke snížení přihlášených množitelských ploch sadbových brambor, ale uznaná plocha byla větší než v roce 2008, což svědčí o dobrém

Na výrobu bramborového škrobu bylo v roce 2009 zpracováno 136,6 tis. t brambor. Průměrný výnos brambor určených k výrobě škrobu činil 33,0 t.ha⁻¹ při škrobnatosti 18,70 %. Celkem bylo vyrobeno 29 618 t bramborového škrobu, tuzemským škrobárnám byla k dispozici národní výrobní kvóta ve výši 33 660 t.

Dne 2. 3. 2010 Evropská komise povolila pěstování.geneticky modifikované odrůdy bramboru pod názvem Amflora v EU pro průmyslové použití a také využití vedlejších produktů škrobu z těchto brambor jako krmivo.

V roce 2010 se nepředpokládají výrazné změny v celkových osázených plochách brambor (Žižka, 2010).

Organizace spojených národů vyhlásila rok 2008 na základě návrhu FAO Mezinárodním rokem brambor. Tato akce měla zdůraznit důležitost využití brambor pro výživu obyvatel v tzv. „rozvojových zemích třetího světa“. Na evropském kontinentě se spotřebuje čtyřikrát více brambor než v rozvojových zemích i přes to, že v posledních 40 letech se v těchto oblastech konzumace brambor zdvojnásobila, na rozdíl od Evropy, kde se naopak spotřeba snížila (Žižka, 2008).

2.2.3 Škodlivé faktory ovlivňující pěstování bramboru

Brambory patří mezi plodiny, které jsou napadány celou řadou chorob. Poškozovány jsou jimi jak nadzemní, tak i podzemní orgány bramboru. Poškození listů a stonků rostlin představuje redukci asimilační plochy a tím i negativní dopad na výnosy. Poškození kořenů a stolonů obvykle negativně ovlivňuje další růst rostliny, což se opět záporně projeví na výši výnosu. Výskyt chorob na hlízách ovlivňuje negativně jejich kvalitu, v některých případech je může i úplně znehodnotit. Choroby brambor mohou být původu fyziologického, virového, bakteriálního a houbového. Někdy mohou být způsobeny i viroidy a mykoplasmami (Vokál et al., 2004).

Nejvyšší redukci výnosu způsobují zejména choroby virového původu. Mezi těžké virové choroby brambor patří onemocnění způsobené viry PVY (Potato Virus Y), PVA (Potato Virus A) a virem svinutky bramboru PLRV (Potato Leaf-Roll Virus). K lehkým
virovým chorobám jsou řazena onemocnění způsobená víry PVS (Potato Virus S), PVX (Potato Virus X) a PVM (Potato Virus M) (Rasocha et al., 2008). Mimořádně škodlivé jsou směšné infekce, kdy je rostlina bramboru napadena více víry (Vokál et al., 2003).

Opomíjeným virem byl donedávna virus PVS, který byl považován za latentní a neškodný, nicméně se v posledních letech začínají uplatňovat postupy tzv. bezvirózního šlechtění. Virus S se stává velice problematickým, zejména z hlediska certifikace rozmnožovacího materiálu bramboru a obchodu s ním v rámci Evropské unie (Ptáček a Dědič, 2003). V současné době je jeho výskyt při množení sadby v České republice hodnocen pouze u základní sadby přepočtovým koeficientem 0,05 %. U certifikované sadby hodnocen není (Rasocha et al., 2008).

Mezi významné patogeny patří rovněž karanténní bakterie, zejména Cms (Clavibacter michiganensis (Smith) Davis et al. ssp. sepedonicus Spieckermann et Kotthoff), která se rozšiřila hlavně díky neuváženým dovozům sadby ze zahraničí a je jedním z limitních faktorů ve výrobě rozmnožovacího materiálu (Kůdela et al., 2002). Vzhledem k efektivní kontrole výskytu tohoto patogena a jeho eradicaci se v současné době vyskytuje v České republice vyjímečně (Kůdela, 2007). Teplomilná Ralstonia solanacearum (Smith) Yabuuchi et al. je rovněž karanténní bakterií, jejíž výskyt u nás zatím nebyl potvrzen. Významnou bakteriózou (aktinomykózou) je aktinomycetová obecná strupovitost bramboru, jejímž původcem je patogen Streptomyces scabies (Thaxter) Lambert et Loria a další blízce příbuzné druhy rodu Streptomyces (St-Onge et al., 2008).

Mezi původce houbových chorob patří například Rhizoctonia solani Kühn, Alternaria solani (Ellis a Martin) Sorauer., rod Fusarium a Pythium (komplex skládkových chorob) a Colletotrichum coccodes (Wallr.) Hughes., způsobující vadnutí (Rasocha et al., 2004). V souvislosti s kvalitou mytých hlíz v posledních letech nabývá na významu Helminthosporium solani Dur. et Mont., původce stříbřitosti slupky hlíz bramboru, která je poměrně hojně rozšířená (Sedláková et al., 2008). Na významu ztrácí chytridie Synchytrium endobioticum (Schilb.) Perc., zejména významně se na její postupné eradicaci podílí důsledná karanténa a rezistentní šlechtění (Rasocha et al., 2004). Obecně nejvýznamnějším patogenem bramboru je oomyceta Phytophthora infestans (Mont.) de Bary, původce plísně bramboru.

Tato dizertační práce se zabývá využitím somatické hybridizace bramboru pro účely zvýšení odolnosti k Phytophthora infestans (Mont.) de Bary.}

Na bramboru se rovněž vyskytuje i celá řada škůdců, kteří mohou parazitovat na nadzemních či podzemních částech rostlin. Škodit mohou přímo požerem či sáním, nebo nepřímo a to tím, že mohou přenášet virové choroby nebo vzniklá poškození mohou být
vstupní branou pro řadu bakteriálních a houbových chorob. Výše škod závisí na řadě faktorů, především pak na populační dynamice škůdce, na průběhu klimatických a vegetačních podmínek, na pěstované odrůdě, agrotechnice, výživě a především na způsobu ochrany, kterou zvolí pěstitel (Vokál et al., 2000).

2.3 Plíšeň bramboru

Pravé plísně (*Oomycetes*) představují skupinu eukaryotních organismů, které jsou morfologicky podobné, ale fylogeneticky odlišné od pravých hub (Qutob et al., 2006).

Phytophthora infestans je hemibiotrofní patogen, který napadá živé části rostlin z čeledi *Solanaceae*. Hospodářsky významně parazituje zejména na bramboru a rajčeti. Způsobuje léze s nekrotickými buňkami uprostřed, obklopenými prstencem pletiva, které se jeví jako zdravé, ale ve skutečnosti je napadené patogenem.

Během vegetace může tato oomyceta zcela zničit, za příznivých podmínek počasi, během 10 až 15 dní bramborovou nať a ztráty na výnosu mohou v letech epidemičkého výskytu dosáhnout až 50 % a dokonce i 70 % (Tymčenko a Jefronová, 1987).

V praxi se ochrana proti tomuto patogenu skládá z pěstitelských opatření, ošetření porostů fungicidy a likvidace natě mechanicky nebo chemicky. Všechna obecně doporučovaná opatření a zásahy proti chorobě musí být vždy upřesněna podle konkrétních podmínek pro každý porost zvlášť (Rasocha et al., 2008).
2.3.1 Taxonomické zařazení

Taxonomická zařazení tohoto patogena se různí. Například Kalina a Váňa (2005) vycházejí ze studie Cavalier-Smith z roku 1986:

- **Doména:** Eukarya (syn. Eukaryonta)
- **Říše:** Chromista (syn. Straminipila)
- **Podříše:** Chromobiothae
- **Kmen:** Bigyra
- **Podkmen:** Pseudofungi
- **Oddělení:** Peronosporomycota (syn. Oomycota)
- **Třída:** Peronosporomycetes (syn. Oomycetes)
- **Podtřída:** Peronosporomycetidae
- **Řád:** Pythiales
- **Čeleď:** Pythiaceae
- **Rod:** Phytophthora
- **Druh:** Phytophthora infestans

2.3.2 Způsob rozmnožování

Phytophthora infestans se rozmnožuje dvěma způsoby – sexuálně (tvoří oospóry) a asexuálně (sporangia). Epidemie plísně bramboru jsou způsobeny populační explozí prostřednictvím asexuálního rozmnožování (Smart a Fry, 2001). V případě asexuálního rozmnožování patogen přezimuje v napadených hlízách v místě oček (Vokál et al., 2004). Životní cyklus P. infestans při nepohlavním rozmnožování, tedy cyklus od tvorby jednoho sporangia k tvorbě následného sporangia probíhá sedm hodin.

Obecně lze říci, že pohlavní rozmnožování má pro P. infestans řadu výhod, které se promítají do ochrany proti tomuto původci plísně bramboru. Oospory mohou odstartovat infekci v přítomnosti hostitele kdykoliv během vhodných podmínek pro rozvoj patogena, a tak vytvářet časnější a rozsáhlejší ohniska plísně bramboru. Oospory pravděpodobně infikují listy ve spodních patrech listového pokryvu a jsou tak chráněny před aplikací fungicidů. V nepříznivých podmínkách během vegetačního období plodiny mohou oospory přežívat na listech a stoncích. Jakmile jsou opět vytvořeny vhodné podmínky pro rozvoj patogena, mohou iniciovat další infekce (Drenth et al., 1995). Následkem pohlavního rozmnožování vznikají geneticky variabilnější populace P. infestans, které jsou spojeny s tvorbou nových agresivních ras schopných překonávat hostitelskou rezistenci a spolehlivě účinné látky fungicidů (Cooke et al., 2003).

2.3.3 Původ Phytophthora infestans

Otázku ale zůstává původ evropské populace plísně. Vzhledem k tomu, že je plíseň bramboru vysoce destruktivní choroba, je velice nepravděpodobné, že by se v Evropě vyskytovala před rokem 1840, aniž by byla zaznamenána. Je proto vysoce pravděpodobné, že ke všem migracím P. infestans na dlouhé vzdálenosti došlo během posledních 165 let (Goodwin, 1997).

Předpokládalo se, že izoláty P. infestans nalezené v Evropě a ve zbývajících částech světa vyjma Mexika, mezi obdobím 1848 a polovinou sedmdesátých let 20. století, byly přímými potomky původní generace patogena, která byla původcem epidemie plísně bramboru ve čtyřicátých letech 19. století. Tato hypotéza byla dále podpořena výsledky analýzy pomocí DNA fingerprintingu, kde všechny analyzované izoláty z Evropy, Severní Ameriky a z velké části i z afrického a asijského kontinentu byly klony jedné linie (Goodwin

2.3.4 Epidemiologie

Epidemiologie plísně vychází z primárního inokula, které přechází nesilně podmínky vegetačního klidu na hlízách v místě oček (Vokál et al., 2004). Po výsadbě mycelium prorůstá do nadzemní části rostliny a za příznivých podmínek, obvykle na vegetačním vrcholu fruktifikuje (Rasocha et al., 2008). Sekundárně se patogen šíří vzdušným proudem pomocí sporangii. Tato mnohojederná sporangia klíčí buď přímo, nebo se rozpadají na pohyblivé dvoubičkaté zoospor (Walker et al., 2008). Zoospory klíčí v kapce

Epidemiologii plísně narušuje přirozená odolnost zajišťovaná introdukcí majorgenů rezistence nebo polní odolnosti, která je odezvou na souhru faktorů vnějšího prostředí a genetického základu odrůdy. Významně se projevuje i tzv. rezistence stářím, kdy patogen jen obtížně napadá ontogeneticky starší části rostlin. Tato odolnost hraje významnou roli v ochraně rostlin a optimalizaci fungicidní ochrany (Vokál et al., 2004).

2.3.5 Fyziologické rasy Phytophthora infestans

Jako první charakterizovali geny rezistence u rodu Solanum a jim odpovídající geny avirulence u Phytophthora infestans Black et al., (1953), kteří vycházeli z Florovy teorie gen proti genu (Flor, 1971). Specifickou virulence je dána variabilitou faktorů virulence, elicitinů.
(extracelulární bílkoviny patogena). Takovým elicitinem je například INF1 (Kamoun et al., 1999), jehož rozpoznání buňkami hostitelské rostliny indukuje buněčnou smrt (Kanzaki et al., 2008). Víšker et al. (2003) uvádí, že vzhledem k rozšíření komplexních ras plísně ztrácí šlechtění na specifickou rezistenci účinnost.

Významnou vlastností agresivních ras je jejich pozdnější nástup během vegetace. Zatímco na počátku vegetace se napadení účastní účastí nespecializované rasy, rasy schopné překonávat geny rezistence se uplatňují jednoznačně až v polovině vegetační sezony (Zadina a Jermoljev, 1972). Tato skutečnost naznačuje, že rezistentní šlechtění proti plísní bramboru má význam zejména u odrůd s delší vegetační dobou.

2.4 Šlechtění na rezistenci k plísní bramboru

Ve státní odrůdové knize ČR bylo pro rok 2010 zapsáno celkem 155 odrůd bramboru. Jednalo se o 34 velmi raných, 47 raných, 50 poloraných a 24 polopozdních až pozdních odrůd. České odrůdy byly v tomto sortimentu zastoupeny z 29,7 %. Z tohoto počtu bylo 104 odrůd testováno na odolnost k Phytophthora infestans (Tabulka 1). Ideální odrůda by měla být odolná vůči plísní bramboru v hlízách i v nati a pouze 4 odrůdy by v roce 2010 tuto podmínku splňovaly. Jednalo se o rané odrůdy Aděla a Poutník, o poloranou odrůdu Spirit a polopozdní až pozdní odrůdu Sibu. Žádná z těchto odrůd však nevykazovala 100 % odolnost zároveň v nati a v hlízách (Čermák, 2010). Proto je snaha šlechtit odrůdy bramboru s co nejvyšším stupněm odolnosti k P. infestans.
Tabulka 1: Procentické zastoupení odrůd bramboru v jednotlivých stupních ranosti z hlediska odolnosti k plísní bramboru v nati a v hlízách (Čermák, 2010)

<table>
<thead>
<tr>
<th>Stupeň ranosti</th>
<th>Počet odrůd</th>
<th>Poškození</th>
<th>Odolné (9-8)</th>
<th>Středně odolné (7-6)</th>
<th>Méně odolné (5-4)</th>
<th>Náchylné (3-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velmi rané</td>
<td>24</td>
<td>natř</td>
<td>0 %</td>
<td>12,5 %</td>
<td>62,5 %</td>
<td>25 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hlízy</td>
<td>54,2 %</td>
<td>33,3 %</td>
<td>12,5 %</td>
<td>0 %</td>
</tr>
<tr>
<td>Rané</td>
<td>29</td>
<td>natř</td>
<td>10,4 %</td>
<td>41,4 %</td>
<td>24,1 %</td>
<td>24,1 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hlízy</td>
<td>51,7 %</td>
<td>48,3 %</td>
<td>0 %</td>
<td>0 %</td>
</tr>
<tr>
<td>Polorané</td>
<td>34</td>
<td>natř</td>
<td>2,9 %</td>
<td>32,4 %</td>
<td>52,9 %</td>
<td>11,8 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hlízy</td>
<td>82,4 %</td>
<td>17,6 %</td>
<td>0 %</td>
<td>0 %</td>
</tr>
<tr>
<td>Polopozdní - pozdní</td>
<td>17</td>
<td>natř</td>
<td>5,9 %</td>
<td>58,8 %</td>
<td>29,4 %</td>
<td>5,9 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hlízy</td>
<td>76,5 %</td>
<td>23,5 %</td>
<td>0 %</td>
<td>0 %</td>
</tr>
</tbody>
</table>

2.4.1 Specifická a nespecifická rezistence

Současná rezistence komerčně využívaných odrůd druhu Solanum tuberosum ssp. tuberosum L. vůči plísní bramboru má jak vertikální, tak i horizontální charakter (Bradshaw a Mackay, 1994).

Specifická (vertikální) rezistence je rezistence proti určité rase patogena. Vyznačuje se poměrně vysokou úrovní rezistence, která je méně závislá na prostředí (ročnících, lokalitách pěstování), bývá však se vznikem nových virulentních ras překonávána. Jedná se o oligogenní rezistenci, která je řízena geny velkého účinku, majorgeny (Chloupek, 2008).

Nespecifická (horizontální) rezistence je rezistence, kdy je hostitel schopen vzodorovat většímu počtu ras patogena. Vyznačuje se poměrně nižší úrovní rezistence, která je více závislá na prostředí (ročník a lokalita, tj. především teplota a vlhkost vzduchu a půdy), nebývá však po vzniku nových ras patogena překonávána. Jedná se o polygenní rezistenci, která je řízena větším počtem genů s malým účinkem, minorgeny (Chloupek, 2008). Horizontální rezistence je hlavním cílem šlechtitelských programů na odolnost bramboru vůči P. infestans (Tian et al., 2006). Jako zdroje pro horizontální rezistenci se využívá rovněž druhu Solanum
demissum Lindl. (Malcolmson a Black, 1966), dále pak S. tuberosum spp. andigenum, S. stoloniferum (Bradshaw a Mackay, 1994) a S. phureja (Śliwka et al., 2006).

2.4.2 Hypersenzitivní a extrémní rezistence

Hypersenzitivní rezistence (HR) je spojena s programovanou buněčnou smrtí v počátečním místě infekce (Morel a Dangl, 1997). Následně dochází k vytvoření malé nekrotizované oblasti, která zabrání dalšímu šíření patogena v rostlině (Procházka et al., 1998). Extrémní rezistence se projevuje bezpříznakovostí neboli imunitou napadené rostliny (Bendahmane et al., 1997).

2.4.3 R geny rezistence

Mnoho R genů rozpoznává pouze limitovaný počet ras patogena a proto neposkytují široké spektrum rezistence. Rezistence rostliny je podmíněna přítomností dominantní sestavy daného R genu. Tyto geny kódují tzv. R proteiny, které jsou lokalizovány na vnější straně plazmatické membrány, mohou se však nacházet i v cytoplazmě. Vytvoření komplexu R proteinu rostliny s elicitorem patogena je signálem pro spuštění obranných reakcí (Pavlová, 2005).

Obvykle se u těchto R proteinů vyskytuje také oblast schopná vázat nukleotidy, označovaná jako NBS (Nucleotide Binding Site). Navázaní nukleotidu ATP nebo GTP je nutné pro přenos signálu, tyto komplexy mohou, ale nemusí mít kinázovou aktivitu. V typickém rostlinném genomu jsou přítomny četné geny pro NBS-LRR proteiny. Každý protein je specificky zapojený v konkrétní signální dráze obranné odpovědi proti určitému patogennímu organismu. Často tato obranná reakce využívá v lokalizovanou buněčnou smrt,
tedy hypersenzitivní reakci. Některé typy NBS-LRR proteinů mají ještě strukturu leucinového zipu (LZ), což jim umožňuje vázat na sebe další proteiny (Pavlová, 2005).

<table>
<thead>
<tr>
<th>Majorengen rezistence</th>
<th>Původní výskyt</th>
<th>Lokalizace</th>
<th>Autor</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>S. demissum</td>
<td>Chromozóm V</td>
<td>Leonard-Schippers et al. (1992)</td>
</tr>
<tr>
<td>R2</td>
<td>S. demissum</td>
<td>Chromozóm IV</td>
<td>Li et al. (1998)</td>
</tr>
<tr>
<td>R3a, R3b, R6, R7</td>
<td>S. demissum</td>
<td>Chromozóm XI</td>
<td>Huang et al. (2005) El-Kharbotly et al. (1996)</td>
</tr>
<tr>
<td>R4</td>
<td>S. demissum</td>
<td>Chromozóm ???</td>
<td>Nebyl dosud lokalizován</td>
</tr>
<tr>
<td>R5, R8, R9, R10, R11</td>
<td>S. demissum</td>
<td>Chromozóm XI – alelická série s R3</td>
<td>Huang et al. (2005)</td>
</tr>
<tr>
<td>Rpi1</td>
<td>S. pinnatisectum</td>
<td>Chromozóm VII</td>
<td>Kuhl et al. (2001)</td>
</tr>
<tr>
<td>RB</td>
<td>S. bulbocastanum</td>
<td>Chromozóm VIII</td>
<td>Naess et al. (2000)</td>
</tr>
<tr>
<td>Rpi-blb1</td>
<td>S. bulbocastanum</td>
<td>Chromozóm VIII</td>
<td>Van der Vossen et al. (2003)</td>
</tr>
<tr>
<td>Rpi-blb2</td>
<td>S. bulbocastanum</td>
<td>Chromozóm VI</td>
<td>Van der Vossen et al. (2005)</td>
</tr>
<tr>
<td>Rpi-blb3</td>
<td>S. bulbocastanum</td>
<td>Chromozóm IV</td>
<td>Park et al. (2005a)</td>
</tr>
<tr>
<td>Rpi-abpt</td>
<td>S. bulbocastanum</td>
<td>Chromozóm IV</td>
<td>Park et al. (2005b)</td>
</tr>
<tr>
<td>Rpi-moc1</td>
<td>S. mochiquense</td>
<td>Chromozóm IX</td>
<td>Smilde et al. (2005)</td>
</tr>
<tr>
<td>Rpi-ber</td>
<td>S. berthaultii</td>
<td>Chromozóm X</td>
<td>Rauscher et al. (2006)</td>
</tr>
<tr>
<td>Rpi-ber1</td>
<td>S. berthaultii</td>
<td>Chromozóm X</td>
<td>Park et al. (2009)</td>
</tr>
<tr>
<td>Rpi-ber2</td>
<td>S. berthaultii</td>
<td>Chromozóm X</td>
<td>Park et al. (2009)</td>
</tr>
<tr>
<td>Rpi-phu1</td>
<td>S. phureja</td>
<td>Chromozóm IX</td>
<td>Śliwka et al. (2006)</td>
</tr>
</tbody>
</table>

Tato disertační práce se bliže týká genu rezistence Rpi-blb1, jehož donorem je druh Solanum bulbocastanum. Kódující sekvence tohoto genu je identická s genem RB a obě tyto alelické varianty jsou funkčně ekvivalentní, jedná se tedy o alelomorfy. Otevřený čtecí rámec (ORF) genu Rpi-blb1 kóduje predikovaný polypeptid skládající se z 970 aminokyselin s odhadovanou molekulovou hmotností 110,3 kDa. Tento protein obsahuje NBS doménu, LRR doménu a na N konci motiv leucinového zipu (Van der Vossen et al., 2003).

V současnosti existuje snaha všechny uvedené R geny rezistence využívat při šlechtění kulturního bramboru za účelem zvyšování jeho odolnosti k plísni bramboru. Při utilizaci těchto genů do genofondu bramboru se často uplatňují prezygotické a postzygotické bariéry vzniku mezidruhových hybridů (Orczyk et al., 2003), což je možné překonat využitím metod somatické hybridizace (Helgelson, 1992). V současné době je snaha tyto geny rezistence klonovat a přenášet do odrůd bramboru, nicméně je tento proces komplikovaný z hlediska legislativy EU a je i výrazně finančně a technologicky náročný. Zároveň je většina dalších důležitých vlastností využívaných ve šlechtění polygenního charakteru a v současnosti nejsou k dispozici jejich izolované a charakterizované sekvence využívané pro tvorbu GMO (Orczyk et al., 2003). Naopak fúze protoplastů transfer těchto polygenních vlastností umožňuje (Millam et al., 1995).

2.5 Vybrané genové zdroje rezistence k plísni bramboru a jejich charakteristika

2.5.1 Solanum bulbocastanum Dun.

Druh Solanum bulbocastanum (Příloha 1) patří do série Bulbocastana, je diploidní, popřípadě triploidní (2n = 24, 3n = 36) a je pro něj charakteristické 1EBN (Bradshaw a Mackay, 1994). Hlavní oblast rozšíření jsou suché oblasti vysočiny centrálního Mexika a
Guatemala. Z morfologického hlediska se jedná o rostlinu s šedozelenými listy, dosahující výšky od 30 do 100 cm, kvetoucí bíle. Úspořádání květní koruny řadí tento druh do skupiny primitivní *Stellata*. Tvoří bílé popřípadě krémové hlízy dosahující velikostí až 7 cm (Correll, 1962).

Vzhledem k sexuální inkompatibility *S. bulbocastanum* byla rezistence k plísní bramboru úspěšně přenesena do kulturního bramboru *S. tuberosum* ssp. *tuberosum* pomocí fúze protoplastů (Helgelson *et al.*, 1998).

2.5.2 *Solanum berthaultii* Hawkes.

Solanum berthaultii je rezistentní vůči *P. infestans*, viroidu vřetenovitosti bramboru (PSTV), mandelince bramborové (*Leptinotarsa decemlineata*) a některým druhům mšic (Hawkes, 1994).

2.5.3 *Solanum pinnatisectum* Bitt.

Druh *Solanum pinnatisectum* (Příloha 1) patří do série *Pinnatisecta*, je diploidní (2n = 24) a patří do skupiny 1EBN (Bradshaw a Mackay, 1994). Nejčastěji oblastí výskytu jsou hory v centrálním Mexiku v nadmořské výšce 1800 – 2400 m. Rostliny dorůstají výšky 25 – 60 cm, kvetou bílé a typem květní koruny jsou řazeny do skupiny primitivní *Stellata*. Rostlina
vytváří často početné malé hlízy o velikosti 1,5 cm, které jsou zbarveny dočervena nebo dožlutá (Correll, 1962). *Solanum pinnatisectum* je rezistentní k *P. infestans*, *Erwinia carotovora* a k abiotickým faktorům prostředí, jako je teplo a sucho (Hawkes, 1994).

2.5.4 *Solanum polyadenium* Greenm.

Druh *Solanum polyadenium* (Příloha 1) patří do série *Polyadenia*, je diploidní (*2n = 24*) a je pro něj charakteristické 1EBN (Bradshaw a Mackay, 1994). Vyskytuje se endemicky v horách centrálního Mexika v nadmořské výšce 1900 – 2900 m. Rostliny dosahují výšky do 100 cm, květy mají nejčastěji bílou nebo krémovou barvu a podle květní koruny jsou řazený do skupiny primitivní *Stellata*. Vytváří nápadně dlouhé převážně bíle zbarvené hlízy dosahující délky až 40 cm. Charakteristické pro rostliny tohoto druhu je, obzvláště když jsou čerstvé, že vydávají silný nepříjemný zápach, který je podobný kopretině řimbabě (*Chrysanthemum parthenium*) (Correll, 1962). *Solanum polyadenium* je potenciálně vhodný druh pro šlechtění na rezistenci k *P. infestans* a k mandelince bramborové (Hawkes, 1994).

2.5.5 *Solanum microdontum* Bitt.

Druh *Solanum microdontum* (Příloha 1) patří do série nekulturní *Tuberosa* je diploidní, popřípadě triploidní (*2n = 24, 3n = 36*) a patří do skupiny 2EBN (Bradshaw a Mackay, 1994). Vyskytuje se na okraji vlhkých lesů, společně s keři na skalnatých svazích, v písečných půdách a okolo starých polí na nadmořských výškách 1300 – 3500 m v oblastech jižní Bolívie a severozápadní Argentiny. Rostliny rostou do výšky 1,5 m, květy mají bílé obvykle se zelenou hvězdou uprostřed a typen květní koruny příslušící skupině primitivní *Rotata*. Hlízy jsou kulaté, mají růžovofialovou barvu a dosahují velikosti okolo 1 cm (Correll, 1962). *Solanum microdontum* je nositelem rezistence k *P. infestans*, *Ralstonia solanacearum*, *Erwinia carotovora*, háďátku *Meloidogyne incognita* a k abiotickým faktorům, jako jsou extrémní teplo a sucho (Hawkes, 1994).

2.5.6 *Solanum vernei* Firbas and Ross.

Druh *Solanum vernei* (Příloha 2) patří do série nekulturní *Tuberosa*. Je diploidní (*2n = 24*) a je pro něj charakteristické 2EBN (Bradshaw a Mackay, 1994). Vyskytuje se endemicky v oblasti severozápadní Argentiny v nadmořské výšce 2300 – 3500 m. Rostliny dosahují
výšky do 100 cm, kvetou různými odstínů vínové barvy a typem koruny patří mezi primitivní *Rotata*. Hlízy mají hnědavou barvu a dosahují velikosti do 8 cm (Correll, 1962). *Solanum vernei* je rezistentní k *P. infestans*, háďátkům *Globodera rostochiensis* a *G. pallida* a je mrazuvzdorné (Hawkes, 1994).

2.5.7 *Solanum verrucosum* Schlechtd.

Druh *Solanum verrucosum* (Příloha 2) patří do série nekulturní *Tuberos*. Je diploidní (2n = 24) a je pro něj charakteristické 2EBN (Bradshaw a Mackay, 1994). Nejfrekventovanější výskyt je ve velehorách centrálního Mexika v nadmořské výšce 2400 – 3200 m. Rostliny dosahují výšky až 60 cm, kvetou tmavě nebo světle purpurově a podle květní koruny jsou řazeny do skupiny odvozená *Rotata*. Hlízy mají převážně bílou barvu a dorůstají velikosti 3 – 6 cm (Correll, 1962). Hawkes (1994) uvádí, že *Solanum verrucosum* je rezistentní pouze vůči *P. infestans*.

2.6 Somatická hybridizace bramboru

2.6.1 Protoplasty rostlin

Rostlinné buňky jsou na povrchu kryty buněčnou stěnou, pod kterou se nachází vnější buněčná membrána, plazmalema. Buněčnou stěnu lze z buňky odstranit například působením celulolytických enzymů. Buňky zbavené buněčné stěny se označují jako protoplasty a jsou schopny přežívat v roztoku o vhodných osmotických podmínkách, ve kterém získávají energeticky nejméně náročný, tedy kulatý tvar (Brandt, 1995).

Protoplasty rostlin se standardně používají více jak tři desetiletí a staly se jedním z nejuniverzálnějších nástrojů v rostlinné biologii. Lze je izolovat ve velkých množstvích z různých pletiv nebo orgánů. Uvolněním z celulózní buněčné stěny se plasmatická membrána stává přístupnější k purifikaci a různým formám výzkumu. Následně je možné indukovat tvorbu kalusů, prýtů, kořenů nebo embryí a z nich regenerovat novou rostlinu (Negrutiu et al., 1992).

Mezi možnosti využití protoplastů patří vnášení cizorodé DNA do hostitelského genomu, které lze uskutečnit dvojím způsobem. Jedná se o transformaci protoplastů, která je pravděpodobně nejuniverzálnější metodou transferu genů (Cherdshewasart et al., 1993) a o fúzi protoplastů, při které dochází k přenosu jaderné i organelové genetické informace (Lössl
et al., 1994). Protoplasty lze také využít například při studiu genové exprese (Hilson et al., 1990) nebo v molekulární cytogenetice například při in situ hybridizaci, která umožní lokalizovat geny na metafázických chromozómech (Mouras et al., 1987).

2.6.2 Historie protoplastových kultur

Možnost, že fúzi protoplastů lze kombinovat rovněž cytoplasmatické organely, by umožnila přenos faktorů zodpovídajících za cytoplasmatickou samčí sterilitu, která hraje důležitou roli při produkci hybridního osiva. Ošetřením protoplastových kultur roztoky obsahující toxiny hub, herbicidy, vysoké koncentrace solí apod. a následnou regenerací životaschopných buněk by bylo možné získat rostliny rezistentní k houbovým patogenům, herbicidům popřípadě tolerantní k zasolení půdy apod. Selekcí rostlin vzniklých regenerací z protoplastových kultur, které byly ošetřeny mutageny popřípadě i bez tohoto ošetření, by bylo možné získat genotypy s mutacemi působícími pozitivně na důležité hospodářské vlastnosti (Grun et al., 1987).

Neexistuje však metoda, která by fungovala univerzálně pro všechny druhy rodu *Solanum* nebo pro všechny dihaploidy bramboru (*Solanum tuberosum* L. spp. *tuberosum*) popřípadě pro tetraploidy komerční odrůdy bramboru (Binding *et al.*, 1978; Shepard, 1982).

2.6.3 Fúze protoplastů

- jednoduchost procesu fúze
- menší toxicita a mechanické poškození protoplastů
- větší objem suspenze protoplastů, který lze najednou fúzovat
- přímá kontrola a ovlivnění průběhu fúze.

Fúze protoplastů se využívá pro produkci různých typů hybridů. Somatický hybrid je jedinec, který vzniká fúzi kompletních protoplastů dvou genotypů. Asymetrický hybrid ve svých buňkách obsahuje kombinovanou cytoplasmu a kompletní jádro jednoho genotypu a pouze část jádra donora. Protoplasty donora jsou nejprve ozařovány X nebo γ paprsky a podle míry ozáření dochází k eliminaci části genomu jádra (Xu *et al.*, 1993).

Extrémním případem je cytoplasmatický hybrid, cybrid, kdy je ozářením eliminováno celé jádro donora a fúzi dochází pouze ke kombinaci cytoplasmy. Takto vzniklý jedinec si zachovává většinu vlastností získaných od recipienta a původní cytoplasm a nebo její část je nahrazena cytoplasmou donora (Perl *et al.*, 1990). Strategie tvorby cybridů se uplatňuje při získávání řady důležitých hospodářských vlastností kódovaných chloroplastovou a mitochondriální DNA. Mezi tyto vlastnosti patří například rezistence k herbicidům a toxinům patogenů, tolerance k extrémním teplotám a cytoplasmatická pýlová sterilita (Sidorov *et al.*, 1994).
2.7 Možnosti detekce somatických hybridů

2.7.1 Morfologické a cytologické metody detekce somatických hybridů

Somatické hybridy je možné hodnotit z hlediska morfologického, kde se porovnávají morfologické znaky těchto jedinců s rodičovskými componentami. Vzhledem k tomu, že při somatické hybridizaci dochází i ke zvyšování stupně ploidie, lze hodnotit takto vzniklé jedince metodami detekce polyploidů. K nepřímým metodám detekce polyploidů patří například zjišťování počtu chloroplastů v uzavíracích párových buňkách průduchů, velikosti a počtu průduchů, měření velikosti pylových zrn nebo zjišťování počtu pórů na pylových zrnech. Všechny tyto metody jsou pouze orientační, a proto se používá hlavně cytologická analýza, která je rozhodujícím a definitivním kriteriem. Cytologické vyšetření se provádí u kořenových špiček nebo u mladých listů rostlin (Zadina a Jermoljev, 1976).

Při detekci somatických hybridů je důležité stanovit kromě počtu chromozómů i složení genomu. K těmto účelům se v současné době používá metoda průtokové cytometrie (angl. Flow Cytometry), kde je navíc možné detekovat, zda se jedná o genotyp vzniklý homofúzí nebo heterofúzí a kolik buněk od každé rodičovské komponenty se na vzniku tohoto genotypu podílelo. Metoda průtokové cytometrie se v posledních letech stala nedílnou součástí celé řady biologických disciplín. Její pomocí lze měřit vlastnosti izolovaných buněk nebo jejich částí (Doležel et al., 2007).

Typický průtokový cytometr se skládá z několika základních komponent: světelný zdroj, průtoková komora a optické zařízení, fotodetektory a procesory pro přeměnu světelných signálů na analogové elektrické impulzy, analogově-digitaální konvertery a počítačový systém pro analýzy a uchovávání digitálních dat. Jádrem průtokového systému je průtoková komora (Obrázek 1), ve které se tekuté pouzdro neobsahující částice setká s analyzovaným vzorkem, což vyústí v separaci a seřazení vzorkových částic do proudu po jedné. Tento fenomén se nazývá hydrodynamická fokusace. Průměr typického vstupního otvoru se pohybuje v rozmezí 50 – 100 µm, jehož výsledkem je rychlost proudu 1 – 10 m. s⁻¹. Jednotlivé částice potom projdou paprskem intenzivního světla rychlosti 100 – 1000 částic.s⁻¹. Pokud byly předtím částice barveny fluorescenčním barvivem schopným absorbovat zdrojem vyzařované světlo, nastane fluorescenční emise. Některé částice mohou obsahovat přirozené fluorochromy (například chlorofyl), na základě kterých funguje fluorescence také. Rozptýlené světlo a vysílaná fluorescence je sbírána čočkami, za kterými jsou umístěny optické filtry. Toho je využíváno pro vyloučení excitační vlnové délky pro fluorescenční měření, a pokud je
potřeba, pro rozdělení fluorescenčního vyzařování při současném měření dvou nebo více fluorescenčních barev. Detektory potom přeměňují světelné pulzy na elektrické, které jsou dále zesilovány logaritmickým zesilovačem. Po zesílení je elektrický signál digitalizován pro následující počítačové zpracování a uchovávání. Výsledky analýzy jsou obvykle zobrazovány ve formě histogramů intenzity fluorescence mezi částicemi ve vzorku.

Obecně má průtoková cytometry dvě klíčové výhody oproti jiným metodám. První je, že může být vyhodnocen velký počet částic ve velmi krátkém čase, což dělá výsledky statisticky vysoce reprodukovatelné a reprezentativní pro celou populaci. Druhou výhodou je schopnost fyzicky roztištět jednotlivé částice nebo buněk ze směsné populace. Třetí je životaschopnost buněk zachována a lze ho uskutečnit i ve sterilních podmínkách. Touto metodou lze detekovat i buňky s nízkou koncentrací ve vzorku (1 : 100 000 a více) a izolovat tak vzácnou populaci, která by nebyla za standardních podmínek identifikována (Doležel et al., 2007).

Obrázek 1: Schéma průtokové komory (upraveno dle Doležel et al., 2007)
2.8 Biochemické metody detekce somatických hybridů

Z biochemického hlediska lze u genotypů rodu *Solanum* a jejich somatických hybridů hodnotit velké množství parametrů. Z pohledu lidské výživy je jedním z limitujících prvků ve šlechtění bramboru obsah antinutričních látek, mezi které patří zejména steroidní glykoalkaloidy.

2.8.1 Steroidní glykoalkaloidy

Druhy z čeledi *Solanaceae*, zahrnující kulturní a nekulturní druhy bramboru a rajčete, produkují široké spektrum steroidních glykoalkaloidů. Jedná se o sekundární metabolity, pro které je charakteristická hořká chuť a toxicita (Friedmann a McDonald, 1997). Míra toxicity je mezi jednotlivými glykoalkaloidy vysoce variabilní, specifické kombinace glykoalkaloidů mohou vykazovat i synergistický účinek (Rayburn et al., 1995).

Dosud byly popsány pouze některé části drah biochemické syntézy steroidních glykoalkaloidů (Obrázek 2). Enzym 3-hydroxy-3-methylglutaryl koenzym A reduktáza (HMGR) katalyzuje přeměnu 3-hydroxy-3-methylglutaryl koenzymu A na kyselinu mevalonovou, což je prekurzor všech izoprenoidových složek. Mezi izoprenoidy rostlin patří mimo jiné antimikrobiální terpenové fytoalexiny, steroidní glykoalkaloidy, steroly, růstové regulátory jako je kyselina abcisová a giberelin, komponenty přenosu elektronů jako je plastochinon a ubichinon, karotenoidy a přírodní kaučuk. Všechny chemické dráhy vedoucí k těmto finálním produktům soutěží o stejný prekurzor. Vznik daného finálního produktu řídí...
první enzym, který se v dané chemické dráze angažuje (Chappell, 1995). Klíčový enzym, který rozhoduje o biosyntéze steroidních glykoalkaloidů, nebyl dosud identifikován.

Enzymy skvalen syntáza (PSS1) a vetispiradien (seskviterpen) cykláza (PVS1) jsou katalyzátory dalšího kroku vedoucího k syntéze buď sterolů a steroidních glykoalkaloidů (PSS1) nebo seskviterpenových fytoalexinů (PVS1). Tyto enzymy soupeří o stejný substrát farmesyl-PP (Krits \textit{et al}., 2007). Z hlediska chemické dráhy biosyntézy glykoalkaloidů je aktivita enzymu HMGR dále zpětně regulována enzymem PSS1 (Yoshioka \textit{et al}., 1999).

Pokud dojde k silné expresi genů pro tento enzym, redukuje se hladina celkových steroidních glykoalkaloidů (Anqvist \textit{et al}., 2003).

Finální reakcí syntézy glykoalkaloidů je glykosylace solanidinu enzymy soladinin galaktosyltransferázu (SGT1) a solanidin glukosyltransferázu (SGT2) za vzniku γ – solaninu a γ – chaconinu. Enzym rhamnosyltransferáza (SGT3) nakonec katalyzuje tvorbu α – solaninu a α – chaconinu z jejich β forem (McCue \textit{et al}., 2007).

Existují i faktory související s růstem, sklizní a posklizňovými úpravami hlíz, které mohou obsah steroidních glykoalkaloidů zvýšovat. Mezi tyto faktory patří například sucho (Berajano et al., 2000), vysoká teplota (Lafta a Lorenzen, 2000) nebo vystavení hlíz světlu (Griffiths a Dale, 2001; Percival et al., 1994). Z těchto důvodů by celkový obsah glykoalkaloidů v konzumních hlízách neměl přesáhnout 200 mg kg^{-1} čerstvé hmoty (Rayburn et al., 1995). V České republice jsou hladiny glykoalkaloidů v konzumních odrůdách regulovány vyhláškou Ministerstva zdravotnictví č. 53/2002 Sb., která stanovuje přípustné množství glykoalkaloidů ve výši 200 mg kg^{-1} neloupaných hlíz.

Steroidní glykoalkaloidy mají pozitivní efekty pro rostlinu, kterou jsou syntetizovány, vykazují antifungální aktivitu (Percival et al., 1998), rezistenci k virovým a bakteriálním chorobám (Rokka et al., 1994) a odpuzují hmyz (Sanford et al., 1992; Yencho et al., 2000). Ideální genotyp bramboru by potom měl mít vysokou hladinu glykoalkaloidů v listech, aby chránil úrodu proti ataku fytopatogenních organismů, a nulovou hladinu v hlízách (Krits et al., 2007).

Při šlechtění bramboru na rezistenci k patogenům se často využívá genových zdrojů rodu *Solanum*, které obvykle vykazují vysokou hladinu glykoalkaloidů v hlízách dosahující koncentrace až 2200 mg kg^{-1} čerstvé hmoty (Van Gelder et al., 1989). Z hlediska spektra glykoalkaloidů jsou tyto genotypy mnohem variabilnější oproti *S. tuberosum* ssp. *tuberosum* (Distl a Wink, 2009), u kterého byly glykoalkaloidy selektovány během domestikace bramboru, a do moderních odrůd se inkorporovala pouze část glykoalkaloidové diverzity (Shakya a Navarre, 2008). Využití genových zdrojů rodu *Solanum* ve šlechtitelském programu bramboru procesem sexuální popřípadě somatické hybridizace však může vést k produkci hlíz s vysokým obsahem glykoalkaloidů a k introdukci jiných glykoalkaloidů než je solanin a chaconin a tím vytvářet potenciální zdroj nebezpečí pro lidské zdraví (Savarese et al., 2009; Yencho et al., 2000).
2.9 Molekulárně genetické metody detekce somatických hybridů

2.9.1 Charakteristika rostlinného genomu

U rostlinných druhů je genetická informace tvořena jadernou a organelovou DNA. Mitochondriální a chloroplastově specifické DNA jsou umístěny v semiautonomních organelách v cytoplasmě buňky a ve většině případů jsou děděny pouze po mateřské rostlině (Kemble a Shepard, 1984). Jedním z důvodů uniparentální dědičnosti cytoplasmy je obecně zabránění šíření symbiontů, parazitů apod. (Birky, 1995).

Cytoplasmatická DNA je nositelkou celé řady důležitých vlastností využitelných ve šlechtění (Kemble et al., 1980; 1982). V poslední době se cpDNA a mtDNA rostlin s velkým zájmem využívá ve fylogenetických a populačních studiích (Chiang et al., 1998; Yamagishi a Terachi, 2003). Dalším příkladem praktického využití cpDNA a mtDNA je detekce somatických hybridů rostlin, u kterých je cytoplasma zděděna po obou rodičích (Scotti et al., 2003; Kemble et al., 1986).
Obecně je chloroplastový genom (plastom) představován cirkulární molekulou dsDNA čítající mezi 120 kbp až 160 kbp (Heinhorst et al., 1988). Analýza velké podjednotky ribulósa-1,5-bisfosfát karboxylázy (RuBP), která je kódována chloroplastovou DNA, prokázala, že genom cpDNA vykazuje vysokou konzervovanost (Scowcroft, 1979). I přesto však Wettstein et al. (1978) prokázali variabilitu cpDNA mezi blízce příbuznými druhy vyšší než se původně předpokládalo. Základní strukturu cpDNA tvoří dvě dlouhé invertované repetice (IRa, IRb), obsahující počátky replikace a geny např. pro ribozomální RNA, oddělující na kruhovém genomu unikátní oblasti označované jako "large single copy" (LSC) a "small single copy" (SSC) (Clegg, 1993; Wakasugi et al., 1998). Kompletní genová mapa cpDNA byla publikována u tabáku autory Yukawa et al. (2005).

Variabilita nekódujících oblastí vedla k vytvoření sady univerzálních chloroplastových a mitochondriálních PCR primerů, které jsou aplikovatelné na většinu rostlinných druhů (Chiang et al., 1998; Kajita et al., 1998; Bastia et al., 2001; Hu a Luo, 2006).

2.9.2 Genom somatického hybrida

rekombinací v rámci mitochondriálního genomu (Fejes et al., 1990). Pro komplexní charakterizaci DNA rostlin vzniklých somatickou hybridizací je proto nutné provést analýzu jaderné, chloroplastové i mitochondriální DNA (Trabelsi et al., 2005).

2.9.3 Analýza DNA

V současné době se nabízí celá řada molekulárně genetických metod umožňujících studium rostlinné DNA. Pro detekci polymorfismů jaderné DNA lze využít metody CAPS (Cleaved Amplified Polymorphic Sequence), která v sobě zahrnuje spojení metod PCR (Polymerase Chain Reaction) a RFLP (Restriction Fragment Length Polymorphism). CAPS polymorfismy či SNP (Single Nucleotide Polymorphisms) jsou často využívané markery nacházející se v genomu ve vazbě na důležité geny řídící hospodářské významné vlastnosti, jako jsou různé geny rezistence (de Jong et al., 1997).

Další možností studia polymorfismu celkové genomické DNA je metoda RAPD (Random Amplified Polymorphic DNA), která se jeví jako cenově efektivní diagnostická metoda ve šlechtění rostlin (Masuelli et al., 1995). Využití krátkých libovolných primerů pro náhodnou amplifikaci při studiu polymorfismů DNA poprvé publikovali Williams et al. (1990). Szczerbakowa et al. (2005) využili tuto metodu pro charakterizaci vnitrodruhových a mezidruhových somatických hybridů bramboru.

Další možností genetické analýzy aplikované pro studium variability rostlin je využití nekódujících oblastí chloroplastové DNA (cpDNA) a mitochondriální DNA (mtDNA) (Taberlet et al., 1991; Duminil et al., 2002).

2.9.4 Detekce somatických hybridů pomocí transgenů

3 VĚDECKÉ HYPOTÉZY

Pro tuto práci byly stanoveny hlavní vědecké hypotézy, které jsou uvedeny v následujících bodech:

- Jsou známé genetické zdroje širokospektrální rezistence bramboru k *Phytophthora infestans*, které jsou obtížně využitelné při běžné hybridizaci bramboru.

- Fúze protoplastů představují účinný nástroj umožňující překlenutí problémů spojených s nekřižitelností donorů genů rezistence a získání výchozího šlechtitelského materiálu nesoucího požadované geny.

- Somatické hybridy je možné detekovat technikami molekulární analýzy DNA na úrovni jaderného a cytoplazmatického genoforu.
4 CÍLE PRÁCE

Hlavním cílem této práce bylo získat somatického hybrida mezi nekulturním druhem rodu *Solanum* a kulturním bramborem *S. tuberosum* ssp. *tuberosum* a detekovat ho prostřednictvím technik molekulární analýzy DNA. Dílčí cíle práce jsou blíže specifikovány v následujících bodech:

- Výběr kolekce donorů širokospektrální rezistence bramboru vůči *Phytophthora infestans* v rámci rodu *Solanum*.

- Charakterizace vybrané kolekce z hlediska fenotypového projevu rezistence a pomocí DNA markerů.

- Optimalizace metod odvození protoplastových kultur a somatických hybridů

- Vyhodnocení metody fúze protoplastů pro získání rezistentního šlechtitelského materiálu.

- Detekce somatických hybridů na základě morfologicko-anatomických, biochemických a molekulárně genetických charakteristik.

- Fenotypové zhodnocení rezistence somatických hybridů.
5 MATERIÁL A METODY

5.1 Rostlinný materiál

Z genové banky při Výzkumném ústavu bramborářském v Havlíčkově Brodě s.r.o. bylo získáno celkem 136 genetických zdrojů rodu *Solanum* a dihaploidů bramboru. Vybrané genové zdroje rodu *Solanum* jsou charakterizovány jako potenciální zdroje genů rezistence bramboru vůči plísni bramboru, jsou diploidní
$(2n = 24)$ a tudíž vhodné pro somatickou hybridizaci s dihaploidy bramboru za předpokladu vzniku tetraploidního výchozího šlechtitelského materiálu odolného k *Phytophthora infestans*.

V této práci byly rovněž použity tetraploidní diferenciační klony *S. tuberosum* ssp. *tuberosum* L. pro analýzu rasového spektra izolátů *P. infestans* určených pro testy rezistence. Sada obsahovala 9 genotypů s jedním genem rezistence R získaným ze *S. demissum* R1, R2, R3, R6, R7, R8, R9, R10, R11, dále pak jeden genotyp bez genů rezistence (rr) a jeden obsahující čtyři geny (R1234).

Rostliny byly kultivovány *in vitro* v kultivačních boxech SANYO ve skleněných kultivačních nádobách o objemu 150 ml s plastovými uzávěry s průduchem. V každé kultivační nádobě bylo 25 ml agarového média dle Murashige a Skoog (1962). Kultivace probíhala při fotoperiodě 16 hodin světlo a teplotě 25°C a 8 hodin tma a teplotě 18°C při
relativní vzdušné vlhkosti 50 %. Část kolekce byla převedena do stolového skleníku, kde byly rostliny pěstovány v kontejnerech o rozměrech 9,5 x 9,5 x 10,5 cm v 900 ml zahradnického substrátu (Agro CS, ČR) při teplotě 25°C ± 6°C.

5.2 Optimalizace metod izolace protoplastů

5.2.1 Izolace protoplastů z mezofylu listů

Byla optimalizována metoda sterilní izolace, kde se jako nejvhodnější ukázala kombinace metod dle Carlberg et al. (1987) a Cheng a Saunders (1995). Izolace probíhala ve sterilních skleněných Petriho miskách o průměru 90 mm. Pro izolaci protoplastů byly použity in vitro rostliny ve stáří 4 – 5 týdnů. Listy těchto rostlin byly umístěny do roztuku 0,3 M sorbitolu a 0,05 M CaCl₂, sterilizovaného autoklávováním, o objemu 12 ml, kde byly nakrájeny na segmenty o velikosti přibližně 1 mm. Roztok slouží k vyrovnání osmotického potenciálu mezi buňkami a vnějším prostředím a segmenty listů v něm byly inkubovány ve tmě jednu hodinu při teplotě 23°C.

Po jedné hodině byl roztok odstraněn sterilní 3 ml Pasteurovou pipetou (PE) a nahrazen 12 ml tzv. digesčního roztoku, jehož složení je uvedeno v příloze 3 pod písmenem B. Tento roztok obsahoval enzymy sloužící k rozštěpení buněčné stěny, a to 0,5 % celulázy Onozuka R10 (Serva, SRN) a 0,1 % macerозymu R10 (Serva, SRN). Roztok byl sterilizován dvojí filtrací přes sterilní membránové bakteriologické filtry s velikostí pórů 0,45 µm a 0,22 µm. Petriho misky byly kultivovány ve tmě při teplotě 23°C po dobu 16 – 20 hodin na rotační třepačce o frekvenci otáček 40 rpm. Odstraněním buněčných stěn a třepáním se do roztoku uvolňují protoplasty. Průběh uvolňování protoplastů byl sledován v hodinových intervalech u dvou genotypů R7 a R11 z diferenciáčně sady klonů tetraploidního bramboru Solanum tuberosum ssp. tuberosum. Jejich počet byl stanoven pomocí mikroskopu Olympus CK-X 41 (Japonsko) v Bürkerově počítací komůrce (Příloha 4). Výsledky byly statisticky zpracovány metodou regresní a korelační analýzy v programu Statistica CZ (Statsoft verze 7.0).

Roztok s uvolněnými protoplasty byl poté ve sterilních podmínkách opatrně odebrán sterilní 3 ml Pasteurovou pipetou (PE) a přefiltrován přes silonovou síťku (velikost obdélníkových ok 50 x 100 µm), pro odstranění hrubých rostlinných zbytků a rozdělen po 6 mililitrech do dvou 15 ml polypropylénových centrifugačních zkumavek. Do Petriho misk bylo dále přidáno 12 ml tzv. promývacího roztoku sterilizovaného autoklávováním, který obsahoval 0,3 M KCl. Tento roztok poté obsahoval zbylé protoplasty a byl rovněž
přefiltrován po 6 ml do zkumavek. Oba roztoky byly opatrně promíchány a tím se nařídila koncentrace látek a enzymů z digesčního roztoku. Konečný objem v jedné zkumavce byl 12 ml. Zkumavky byly centrifugovány 5 minut při 71 x g při teplotě 20°C v centrifuze Hettich universal soft 30RF (SRN).

Po centrifugaci byl odstraněn supernatant. Sediment obsahující živé protoplasty a zbytky buněk byl sterilní 3 ml Pasteurovou pipetou (PE) resuspendován v 10 ml sterilního roztoku 20 % sacharózy a převrstven 1 ml promývacího roztoku (0,3 M KCl). Roztoky tak vytvořily koncentrační gradient, který umožnil separaci nativních protoplastů. Zkumavky byly následně centrifugovány 10 minut při 61 x g při teplotě 20°C. Živé protoplasty migrovaly na rozhraní gradientu, kde vytvořily prstenec (Příloha 4). Tento prstenec byl sterilní 3 ml Pasteurovou pipetou (PE) odebrán maximálně do objemu 2 ml do nových zkumavek, kde byl opatrně promíchán s 12 ml promývacího roztoku. Tím se snížila koncentrace sacharózy na minimum. Takto upravená suspenze protoplastů byla centrifugována 5 minut při 50 x g při teplotě 20°C.

Sediment byl poté resuspendován v 6 ml 0,47 M sterilního roztoku mannitolu a znovu centrifugován 5 minut při 50 x g z důvodu odstranění zbývajících iontů, které by komplikovaly průběh vlastní fúze. Finálně byly protoplasty naředěny do nových zkumavek, kde byl sterilní roztok 0,47 M mannitolu na koncentraci odpovídající parametrům fúze, která je bliže popsána v kapitole 5.4.1.

5.2.2 Vliv složení médií pro kultivaci výchozího materiálu na výtěžnost a viabilitu protoplastů

Byl testován vliv složení médií na kultivaci výchozího rostlinného materiálu s cílem získání co největší listové plochy pro zvýšení výtěžnosti izolace protoplastů z mezofylu rostlin. V pokusu byly použity tři genotypy Solanum verrucosum 299, S. bulbocastanum PIS 54 a S. berthaultii 260. Všechny rostliny byly kultivovány ve skleněných kultivačních nádobách o objemu 150 ml s plastovými uzávěry s průduchem. V každé kultivační nádobě bylo 25 ml živného média. Bylo porovnáváno SH médium (Schenk a Hildebrandt, 1972), MS médium (Murashige a Skoog, 1962) a CH médium (Cheng a Saunders, 1995), které je v příloze 3 označeno písmenem A. Bříza a Machová (1991) uvádějí, že přidáním AgNO₃ a morforegulátoru Alar 85 dochází ke zkrácení internodií a ke zvětšení listové plochy. Každé médium bylo proto použito ve 3 variantách. První varianta byla kontrola, druhá s Alarem 85 v koncentraci 1 mg.l⁻¹ a
AgNO₃ v koncentraci 1,5 mg.l⁻¹ a třetí varianta s Alarem 85 v koncentraci 5 mg.l⁻¹ a s AgNO₃ v koncentraci 7,5 mg.l⁻¹. Nadální kultury byly kultivovány v kultivačních boxech při fotoperiodě 16 hodin světlo a teplotě 25°C a 8 hodin tma a teplotě 18°C při relativní vzdušné vlhkosti 50 %. Kultivace ve všech případech probíhala po dobu 6 týdnů.

Hodnocení kultivace bylo prováděno vždy na 6 rostlinách od každého druhu a od každé varianty média. Jako první byla měřena délka rostlin bez kořenů od prvního nódu po vrcholové větvení v cm. Byl stanoven počet listů každé rostliny. Dále byla stanovena hmotnost čerstvé biomasy a sušiny rostlin. Sušina byla zjištěna po 4 hodinách sušení v horkovzdušné sušárně při 105°C. Výsledky byly statisticky vyhodnoceny metodou analýzy rozptylu hlavních efektů v programu Statistica CZ (Statsoft verze 7.0).

Výtěžnost a životaschopnost protoplastů byla hodnocena v Bürkerově počítací komůrce. Životaschopnost byla stanovena barvením methylenovou modří. K 0,5 ml suspenze protoplastů v 0,47 M roztoku mannitolu bylo přidáno 10 µl 0,25 % methylenové modři rozpuštěné v roztoku mannitolu o stejně molaritě. Barvivo bylo ponecháno 10 minut působit. Byla provedena regresní a korelační analýza závislosti životaschopnosti na výtěžnosti protoplastů programem Statistica CZ (Statsoft verze 7.0).

5.3 Výběr výchozího materiálu vhodného pro somatickou hybridizaci

5.3.1 Fenotypové zhodnocení odolnosti klonů k Phytophthora infestans

Všechny genotypy uvedené v tabulce v příloze 11 byly z in vitro podmínek převedeny nejprve do perlitu z důvodu otužení rostlin a po jednom týdnu do skleníku. Pro fenotypové zhodnocení odolnosti genotypů k P. infestans byl použit infekční test metodou listových terčíků (Příloha 5) (Zadina a Jermoljev, 1976). K testu byly použity listy o velikosti přibližně 30 x 15 mm odebrané z rostlin ve stáří 6 týdnů. Tři listy byly na spodní straně listů inokulovány suspenzí sporangii izolátu Phytophthora infestans s komplexní virulencí k majorgenům rezistence R odvozenými ze Solanum demissum (R₁, R₂, R₃, R₄, R₆, R₇, R₈, R₉, R₁₀, R₁₁). Koncentrace této suspenze byla 20 000 sporangii na 1 ml roztoku. Izolát pocházel z lokality Valečov (Česká republika) a byl získán ve spolupráci s Katedrou ochrany rostlin (ČZU v Praze). Kultivaci izolátu v in vitro podmínkách popisuje Mazáková (2008). Čtvrtý list byl ponechán jako negativní kontrola. Listy byly po jednom dni otočeny a po čtyřech dnech byl hodnocen fenotypový projev odolnosti případné náchylnosti genotypů. Genotypy byly posuzovány jako odolné (0 – 25 % poškozené listové plochy), středně odolné
(25,1 – 50 %) a náchylné (50,1 – 100 % nebo sporulace mycelia). Výsledky tohoto testu byly porovnány s výsledky genové banky při Výzkumném ústavu bramborářském v Havlíčkově Brodě s.r.o., kde bylo testováno 79 genotypů druhu *S. bulbocastanum* (PI243510) - donory genu *Rpi-blb1*, metodou inokulace celých rostlin *in vitro* (Příloha 5). Tato metoda spočívala v aplikaci inokula postřikem. Hodnocení probíhalo rovněž po čtyřech dnech.

5.3.2 Výběr vhodných genotypů z hlediska izolace protoplastů

Na základě výsledků fenotypového zhodnocení odolnosti k *P. infestans* byly vybrány odolné genotypy, které byly následně hodnoceny z hlediska vhodnosti pro tvorbu somatických hybridů fúzi v elektrickém poli. Hodnocena byla zejména výtěžnost životaschopných protoplastů po izolaci.

5.4 Tvorba somatických hybridů

5.4.1 Fúze protoplastů

Pro fúzi v elektrickém poli byl použit elektroporátor BTX verze 2001 (USA). Vlastní fúze probíhala ve sterilních podmínkách ve fúzní komoře o objemu 400 µl (Příloha 6) s roztoci elektrod 2 mm. Podmínky jednotlivých fúzí byly optimalizovány pro každý vzorek zvlášť. K fúzi byly použity vždy kombinace genotypů dihaploida *Solanum tuberosum* s s nekulturním druhem rodu *Solanum*. Přehled použitých kombinací je uveden v kapitole 6.3.1 (Tabulka 14). Nativní protoplasty obou genotypů byly smíchány v poměru 1 : 1 a byla upravena finální koncentrace na přibližně 400 000 protoplastů v 1 ml 0,47 M roztoku mannitolu. Parametry fúze byly ve většině případů shodné. Prvním krokem bylo působení střídavého proudu o napětí 55 V . cm⁻¹. V této fázi dochází k polarizaci a následnému řetízkování protoplastů, což umožní kontakt mezi cytoplasmatickými membránami (Příloha 6). Doba působení střídavého proudu byla stanovena pro každý vzorek zvlášť s cílem dosažení dostatečného zřetízkování protoplastů. V další fázi následoval impulz stejnosměrného proudu o napětí 2100 V . cm⁻¹ po dobu 60 µs. Pulzem dojde k narušení membrán a ke vzájemnému fúzování obsahů buněk. Třetím krokem je působení střídavého proudu o napětí stejném jako v prvním kroku po dobu 9 s, kdy dochází k obnovení funkce membrán.
5.4.2 Kultivace a regenerace protoplastových kultur

Suspenze protoplastů byla opatrně promíchána s C médiem a dále k nim byl přidán shodný objem D média, které obsahuje LGT (Low Melting) agarózu (Serva, SRN). Výsledkem bylo rovnoměrné rozmístění protoplastů v celém objemu kultivačního média a tím bylo dosaženo snížení možnosti tvorby kalusů z více buněk. Kultivace probíhala ve tmě při teplotě 25°C. Za 30 – 50 dní byly kalusy o velikosti 0,5 mm převedeny na E médium, které obsahovalo jako gelující agens Phytagel (Sigma, SRN), a byly kultivovány rovněž ve tmě při 25°C.

Kalusy o velikosti přibližně 1 mm byly převedeny na F médium, které obsahovalo Phytagel a z rostlinných fytohormonů navíc kyselinu giberelovou a indolyoctovou pro navození tvorby prýtů. Kultivace probíhala ve sterilních polystyrenových Petriho miskách o průměru 6 cm (Nunc, Dánsko) při fotoperiodě 16 hodin světlo o fotosynteticky aktivním ozáření 20 µE . m⁻² . s⁻¹ a teplotě 25°C a 8 hodin tma a teplotě 18°C.

Prýty o velikosti větší než 10 mm byly odebrány a převedeny na standardní kultivační médium A bez růstových regulátorů, kde došlo k regeneraci kořenů. Složení všech médií A – F je uvedeno v Příloze 3.
5.5 Analýzy DNA pro detekci somatických hybridů

DNA byla extrahována pomocí DNeasy Plant Mini Kit (Qiagen, SRN). Postup izolace je uveden v Příloze 7. Všechny analýzy pomocí PCR probíhaly v 0,2 ml sterilních polypropylénových zkumavkách v termocykleru T-gradient Thermocycler (Biometra, SRN).

5.5.1 RAPD analýza

Vybrané genotypy kolekce druhů rodu *Solanum* byly podrobeny RAPD analýze s cílem charakterizovat vnitrodruhovou a mezidruhovou variabilitu s následným potenciálním využitím metody pro detekci somatických hybridů. Byly otestovány sady dekamerických primerů OPG a OPN (Operon, USA). RAPD polymorfismy byly následně hodnoceny pomocí primerů OPG 8, OPN 3, 5, 8, 11, 15 a 18. U primerů OPN 11 a 18 bylo na základě podobnosti RAPD profilů jednotlivých genotypů provedeno statistické vyhodnocení metodou shlukové analýzy UPGMA v programu Quantity One (Bio-Rad, USA).

Pomocí metody RAPD byla dále hodnocena somaklonální variabilita u genotypů *S. bulbocastanum* 17 a 41 a jejich protoplastových regenerantů pomocí sad RAPD primerů OPN, OPH, OPM, OPF a OPG (Operon, USA).

12,5 µl PCR reakční směsi obsahovalo 1x reakční pufr (10x Taq Buffer with KCl; Fermentas, Litva), 2,5 mM MgCl₂, dNTP o koncentraci 0,3 mM, 15 ng primeru, 0,5 jednotky Taq polymerázy (Fermentas, Litva) a 10 ng DNA. Teplotní a časový profil reakce byl následující: 94°C po dobu 180 s při první denaturaci, následované 44 PCR cykly (94°C 20 s denaturace, 36,5°C 45 s annealing, 72°C 105 s elongace) a 72°C po dobu 360 s pro závěrečnou extenzi.

Separace produktů amplifikace probíhala 2 hodiny při napětí 5 V.cm⁻¹ vzdálenosti elektrod, v 1 x TBE pufru na 1,5 % horizontálním agarózovém gelu vizualizovaném pomocí ethidiumbromidu (5µg.ml⁻¹). Elektroforeogramy byly dokumentovány systémem GelDoc™XR (Bio-Rad, USA). Statistické hodnocení podobností mezi RAPD profily bylo provedeno shlukovou analýzou UPGMA pomocí programu Quantity One (Bio-Rad, USA).

5.5.2 Analýza jaderné DNA

Jako CAPS markery byly pro detekci polymorfismů použity SPUD 237 a GP21 (de Jong et al., 1997). Sekvence primerů a velikost PCR produktů před štěpením jsou uvedeny v tabulce 3, složení PCR reakce a její teplotní a časový profil v tabulkách 4 a 5. Štěpení PCR
produktu obou markerů probíhalo pomocí restrikčního enzymu _Alu_I_ (Fermentas) při 37°C podle instrukcí výrobce.

Tabulka 3: Sekvence primerů CAPS markerů GP21 a SPUD 237

<table>
<thead>
<tr>
<th>Marker</th>
<th>Primer</th>
<th>Sekvence</th>
<th>Produkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP21</td>
<td>GP21F</td>
<td>5’ GGT TGG TGG CCT ATT AGC CAT GC 3’</td>
<td>600 bp</td>
</tr>
<tr>
<td></td>
<td>GP21R</td>
<td>5’ AGT GAG CCA GCA TAG CAT TAC TTG 3’</td>
<td></td>
</tr>
<tr>
<td>SPUD237</td>
<td>SPUD237F</td>
<td>5’ TTC CTG CTG ATA CTG ACT AGA AAA CC 3’</td>
<td>400 bp</td>
</tr>
<tr>
<td></td>
<td>SPUD237R</td>
<td>5’ AGC CAA GGA AAA GCT AGC ATC CAA G 3’</td>
<td></td>
</tr>
</tbody>
</table>

Tabulka 4: Složení reakční směsi pro markery SPUD237 a GP21

<table>
<thead>
<tr>
<th>Marker</th>
<th>DNA [ng]</th>
<th>Reakční pufr</th>
<th>MgCl₂ [mM]</th>
<th>dNTP [mM]</th>
<th>Primer F [µM]</th>
<th>Primer R [µM]</th>
<th>Taq polymeráza [unit]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPUD237</td>
<td>50</td>
<td>1x</td>
<td>2,5</td>
<td>0,4</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>GP21</td>
<td>100</td>
<td>1x</td>
<td>2,5</td>
<td>0,4</td>
<td>0,5</td>
<td>0,5</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabulka 5: Podmínky průběhu PCR reakcí markerů SPUD237 a GP21

<table>
<thead>
<tr>
<th>Počet cyklů</th>
<th>1x</th>
<th>35x</th>
<th>1x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krok</td>
<td>První denaturace</td>
<td>Další denaturace</td>
<td>Annealing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Marker</th>
<th>První denaturace</th>
<th>Další denaturace</th>
<th>Annealing</th>
<th>Elongace</th>
<th>Finální elongace</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPUD237</td>
<td>94</td>
<td>180</td>
<td>94</td>
<td>20</td>
<td>55</td>
</tr>
<tr>
<td>GP21</td>
<td>94</td>
<td>180</td>
<td>94</td>
<td>20</td>
<td>60</td>
</tr>
</tbody>
</table>

5.5.3 Analýza chloroplastové a mitochondriální DNA

5.5.3.1 Výběr vhodných univerzálních primerů

Na základě literatury bylo vybráno celkem 8 párů univerzálních primerů: 4 páry pro amplifikaci nekódujících oblastí cpDNA a 4 páry pro mtDNA. Jejich charakterizace je uvedena v tabulce 6. Tyto primery nasedají v genomu chloroplastové a mitochondriální DNA do kódujících vysoce konzervativních oblastí exonů příslušných genů, proto jsou tyto primery vysoce specifické pro danou organelovou DNA.
Tabulka 6: Charakteristika vybraných cpDNA a mtDNA primerů

<table>
<thead>
<tr>
<th>Název</th>
<th>Gen</th>
<th>Sekvence</th>
<th>Annealing [°C]</th>
<th>Délka produktu [bp]</th>
<th>Pozice</th>
<th>Autor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mt1 F</td>
<td>atp9</td>
<td>5´ CCAAAGTGAGATGTCAGAATGAT3´</td>
<td>59</td>
<td>279</td>
<td>A 78821-79081</td>
<td>Duminil et al. (2002)</td>
</tr>
<tr>
<td>Mt1 R</td>
<td>atp9</td>
<td>5´ CTTCGGTGTAGAGCAAAGCC3´</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mt2 F</td>
<td>nad2/4</td>
<td>5´ TCTCATATAGAATCCATGTCC3´</td>
<td>59</td>
<td>1800</td>
<td>A 129794-128013</td>
<td>Duminil et al. (2002)</td>
</tr>
<tr>
<td>Mt2 R</td>
<td>nad2/5</td>
<td>5´ CTATTGTTTCTCGCGGCTT3´</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mt3 F</td>
<td>rm5</td>
<td>5´ GAGGTCGAATGGGATCGGG3´</td>
<td>58</td>
<td>273</td>
<td>A 161129-161383</td>
<td>Duminil et al. (2002)</td>
</tr>
<tr>
<td>Mt3 R</td>
<td>rm18-1</td>
<td>5´ GGGGAGTGCTAACAAGGATG3´</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mt5 F</td>
<td>cox1</td>
<td>5´ TTGTTACGACCACCGAAGA3´</td>
<td>59</td>
<td>1360</td>
<td>A 149988-151329</td>
<td>Duminil et al. (2002)</td>
</tr>
<tr>
<td>Mt5 R</td>
<td>cox1</td>
<td>5´ TCGGTCATTGCTTGGAG3´</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cp3 F</td>
<td>trnL</td>
<td>5´ CGAAATCGGTAGACGCTACG3´</td>
<td>63</td>
<td>557</td>
<td>49298-49855</td>
<td>Taberlet et al. (1991)</td>
</tr>
<tr>
<td>Cp3 R</td>
<td>trnL</td>
<td>5´ GGGGATAGAGGGACTTGAAC3´</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cp4 F</td>
<td>trnL</td>
<td>5´ GGTTCAAGTCCCTATCCC3´</td>
<td>63</td>
<td>418</td>
<td>49854-50272</td>
<td>Taberlet et al. (1991)</td>
</tr>
<tr>
<td>Cp4 R</td>
<td>trnF</td>
<td>5´ ATTTGAACTGGTGACACGAG3´</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cp5 F</td>
<td>rbcL</td>
<td>5´ ATGTCACCAACAGAACAAGCTAAGCAAAGT3´</td>
<td>67</td>
<td>1381</td>
<td>N 57587-58967</td>
<td>Hiratsuka et al. (1989)</td>
</tr>
<tr>
<td>Cp5 R</td>
<td>rbcL</td>
<td>5´ TTTCGAAAGCGACAGTCTCCAGGACTCC3´</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cp7 F</td>
<td>trnV</td>
<td>5´ AGTTTCGAGCTCTGTTATCC3´</td>
<td>64</td>
<td>297</td>
<td>N 102509-102805</td>
<td>Al-Janabi et al. (1994)</td>
</tr>
<tr>
<td>Cp7 R</td>
<td>16S rRNA</td>
<td>5´ GCATGCGCGCCAGGCATTAC3´</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A – Arabidopsis thaliana, N – Nicotiana tabacum

5.5.3.2 Optimalizace podmínek amplifikace

U všech markerů byla nejprve provedena pro každý pár primerů optimalizace složení reakční směsi, kde proměnné představovaly množství MgCl₂, dNTP a primerů. Dále byla optimalizována anelační teplota pomocí teplotního gradientu a časový profil reakce. Optimalizace byla uskutečněna vždy na dvou genotypech druhů S. bulbocastanum a S. berthaultii. Produkty PCR byly separovány 1,5 hodiny při napětí 5 V.cm⁻¹ vzdálenosti elektrod na horizontální agarové elektroforéze v 1xTBE pufru. Výsledky byly zdokumentovány systémem GelDoc™XR (Bio-Rad, USA).

5.5.3.3 Detekce variability

Vybrané optimalizované markery byly aplikovány na vybranou kolekci genotypů diploidních a tetraploidních druhů rodu Solanum. Byla sledována variabilita mezidruhová i vnitrodruhová. Vnitrodruhová variabilita byla charakterizována u druhů čítajících větší počet genotypů získaných z různých genových bank na světě (tj. z různých populací).
U většiny vybraných markerů nebyla detekována variabilita ve velikosti produktů amplifikace, a proto bylo použito restrikční štěpení těchto produktů pomocí vybraných enzymů, analýza SSCP (detekce jednovláknového konformačního polymorfismu) a DGGE (denaturační gradientová gelová elektroforéza), popřípadě CDGE (konstantní denaturační gelová elektroforéza).

U analýzy metodou SSCP probíhala separace PCR produktů markerů Mt3 a Cp4 ve vertikálním 8 % akrylamidovém gelu (AA : bisAA – 37,5 :1) o rozměrech 16 x 16 x 0,075 cm v 1 x TBE pufru. Vzorky byly denaturovány 95 % formamidem při 95°C po dobu 10 min a separovány při 30 W po dobu 210 min v cele DCode (Bio-Rad) při 15°C a vizualizovány v 1 x TBE pufru pomocí ethidium bromidu (1,5 μg.ml⁻¹ barvící lázně).

Metody DGGE a CDGE musely být nejprve optimalizovány z hlediska koncentrace akrylamidu, denaturantů (močoviny a formamidu) v elektroforetickém gelu a dále z hlediska teplotního a časového profilu elektroforézy. Pomocí těchto metod byly poté analyzovány čtyři markery Mt1, Mt3, Cp4 a Cp7. Všechny analýzy probíhaly ve vertikálním akrylamidovém gelu (AA : bisAA – 37,5 :1) o rozměrech 16 x 16 x 0,1 cm v 1 x TAE pufru (40 mM Tris, 20 mM ledová kyselina octová, 1 mM EDTA, pH 8,0) obsahujícím denaturační činidla močovinu a formamid. Například 40 % koncentrace denaturantů se skládá z 16 ml formamidu a z 16,8 g močoviny na 100 ml roztoku gelu. Koncentrace akrylamidového gelu a denaturačních činidel byly optimalizovány pro každý marker zvláště a jsou uvedeny v části výsledky a diskuze v kapitole 6.4.3.2.3. Výsledky separace byly vizualizovány pomocí ethidium bromidu (1,5 μg.ml⁻¹). Perpendikulární denaturační gradientová elektroforéza (DGGE) probíhala 120 min při teplotě 56°C a napětí 150V v cele DCode (Bio-Rad). Pomocí perpendikulární denaturační gradientové elektroforézy byla stanovena optimální koncentrace denaturačních činidel (kapitola 6.4.3.2.3) pro konstantní gradientovou elektroforézu (CDGE), která následně umožní detekovat konkrétní bodové mutace u konkrétních genotypů. Parametry konstantní gradientové elektroforézy byly optimalizovány a jsou uvedeny v části výsledky a diskuze v kapitole 6.4.3.2.4.

Všechny výsledky byly dokumentovány systémem GelDoc™XR (Bio-Rad, USA). Statistické hodnocení variability bylo provedeno pomocí programu Quantity One (Bio-Rad, USA) – u metody CDGE byl na základě podobnosti elektroforetických drah vybraných genotypů u markeru Cp4 shlukovou analýzou sestaven dendrogram.
5.5.3.4 Stanovení sekvencí vybraných markerů

Pro ověření mezigendruhové variability detekované markerem Cp4 metodou CDGE byla provedena sekvence PCR produktů tohoto markeru u vybraných genotypů. Pro ověření výsledků molekulárně genetických analýz byla u vybraných genotypů dále provedena přímá obostranná sekvence produktů markerů Mt1, Mt3, Cp3 a Cp7 pomocí sekvenátoru ABI 3110 (Applied Biosystems, USA). Výsledky byly zpracovány v programu BioEdit a sekvence porovnány s nukleotidovou databází NCBI.

5.6 Detekce somatických hybridů

Sklizeň pokusů proběhla v polovině října. Hodnocení genotypů zahrnovalo jednak morfologický popis, dále metody nepřímé detekce (odhadu) stupně ploidie rostlin pomocí niže uvedených cytologických měření a dále dvě nezávislé metody molekulární analýzy DNA.

5.6.1 Morfologické a cytologické metody detekce somatických hybridů

5.6.1.1 Morfologické hodnocení

5.6.1.2 Detekce stupně ploidie

5.6.1.2.1 Průtoková cytometrie

Jako exaktní důkaz zvýšeného počtu chromozómů regenerovaných rostlin ve srovnání s výchozími partnerskými genotypy byla využita analýza velikosti jader průtokovou cytometrií ve spolupráci s ÚEB AV v Olomouci a s Botanickým ústavem AV ČR, v.v.i. v Průhonicích.

Pro detekci stupně ploidie metodou průtokové cytometrie byly použity rostliny, převedené z *in vitro* podmínek do skleníku, ve stáří 3 týdnů. Bylo analyzováno celkem 44 genotypů, z toho 3 genotypy druhu *S. bulbocastanum*, 1 x *S. verrucosum*, 2 x dihaploidy *S. tuberosum* ssp. *tuberosum*, 9 x rostliny vzniklé regenerací pouze *S. bulbocastanum* a 29 potenciálních somatických hybridů. Jako srovnávací standard byla použita diploidní rostlina sedmíkeráška obecná (*Bellis perennis*) z důvodů nízkého obsahu jader v G2 fázi buněčného cyklu, což zajišťuje správnou interpretaci výsledků analýzy.
Vzorky pro vlastní analýzu byly připraveny modifikovanou metodou dle Otto (1990) skládající se z několika bodů:

1. Příprava barvícího pufru přidáním 1 ml zásobního roztoku fluorochromu DAPI a 50 µl β – merkaptoethanolu do 25 ml pufru Otto II. Zásobní roztok β – merkaptoethanolu má koncentraci 2 µl.ml⁻¹ a slouží k zabránění oxidace polyfenolických látek.

2. Nařezání mladých nepoškozených listů o velikosti 1 cm² analyzovaného genotypu společně s dvojnásobným množstvím listů srovnávacího standardu rostliny Bellis perennis novou říletkou v Petriho misce obsahující 500 µl pufru Otto I chlazeného v ledové lázni.

3. Promíchání a přefiltrování vzniklé suspenze přes nylonové síto o průměru ok 42 µm.

4. Inkubace vzorku při laboratorní teplotě po dobu 5 min.

5. Přidání 1 ml pufru Otto II obohaceného o fluorochrom (viz. 1. bod postupu) a dobře promíchat.

6. Inkubace ve tmě při pokojové teplotě po dobu 5 min.

7. Analýza obsahu DNA izolovaných jader ve vzorku pomocí průtokového cytometru Partec PAS (Německo).

Pufr Otto I má složení 0,1 M monohydrát kyseliny citrónové a 0,5 % Tween 20, filtruje se přes 0,22 µm filtr a uchovává se při teplotě 4°C. Pufr Otto I se skládá z 0,4 M Na₂HPO₄ · 12 H₂O, filtruje se přes 0,22 µm filtr, uchovává se při teplotě 4°C a před každým použitím je třeba ho znovu přefiltrovat. Chemický název fluorochromu DAPI je 4´-6-diamidin-2-phenylindol (C₁₆H₁₅N₅). Jedná se o modré fluorescenční barvivo, které tvoří komplexy s molekulami DNA vazbou na A – T páry. Zásobní roztok DAPI barviva má koncentraci 0,1 mg.ml⁻¹, filtruje se přes 0,22 µm filtr a uchovává se při -20°C ve zkumavkách o objemu 1 ml (Otto, 1990; Gichner et al., 2006).

Z výsledků analýz průtokové cytometrií byl stanoven stupeň ploidie a složení genomu somatických hybridů.

5.6.1.2.2 Analýza uzavíracích párových buněk průduchu

Metoda průtokové cytometrie byla doplněna nepřímým hodnocením stupně ploidie analýzou velikosti průduchových buněk a počtu chloroplastů v obou svěracích buňkách průduchu. Byla odebrána část spodní pokožky ze středové části listů prvních čtyř listových
pater rostliny a obarvana 0,1 % AgNO₃. V rámci této analýzy byly vzájemně porovnány genotypy Solanum bulbocastanum 17 (2n), DH 387 (2n), S. tuberosum R10 (4n) a somatický hybrid REG 34 F (4n). Výsledky byly statisticky zpracovány v programu Statistica CZ (Statsoft verze 9.0).

5.6.2 Molekulárně genetické metody detekce somatických hybridů

Jako důkaz hybridnosti genotypu byly využity dvě nezávislé metody molekulární analýzy DNA, které měly doložit jak hybridnost v oblasti jaderné DNA tak i DNA cytoplazmatické.

5.6.2.1 RAPD analýza

Hodnocení hybridnosti celkové DNA bylo provedeno metodou RAPD. Pro analýzu bylo použito celkem 8 RAPD primerů OPN 8, 11, 13, 14, 15, 20, OPH 20 a OPF 5. Složení reakční směsi, teplotní a časový profil PCR reakce a metoda vyhodnocení jsou uvedeny v kapitole 5.5.1.

5.6.2.2 Analýza chloroplastového markeru Cp4

Chloroplastová DNA rodičovských genotypů a potenciálních somatických hybridů byla analyzována na základě markeru Cp4 metodou DGGE a CDGE. Postup analýzy je uveden v kapitole 5.5.3.3. Pro detailní vyhodnocení byl tento produkt osekvenován u genotypů Solanum bulbocastanum PIS 66, 17, Solanum verrucosum 299, DH 165, 322 a potenciálních somatických hybridů REG 20 F, 24 F, 30 F, 34 F, 35 F, 39 F a 52 F a vyhodnocen v programu BioEdit.

5.7 Charakteristika vybraných vlastností somatických hybridů z hlediska využitelnosti ve šlechtění bramboru

5.7.1 Fenotypové zhodnocení odolnosti somatických hybridů k Phytophthora infestans

Pro fenotypové zhodnocení odolnosti genotypů, převedených do skleníku, k P. infestans byl použit infekční test metodou listových terčíků (Příloha 5) (Zadina a Jermoljev,
1976). Detailní popis této metody je uveden v kapitole 5.3.1. Dále byla zhodnocena odolnost v polních podmínkách s přirozeným infekčním tlakem patogena.

5.7.2 Tvorba a výnosový potenciál hlíz

Všechny genotypy potenciálních somatických hybridů a jejich rodičů byly hodnoceny z hlediska schopnosti tvořit hlízy. U hlíz byla dále provedena fotodokumentace a morfologické hodnocení pomocí klasifikátoru pro rod Solanum (Vidner et al., 1987). Bylo hodnoceno celkem 9 parametrů u všech genotypů z polního a skleníkového pokusu. U vybraných genotypů z dvouletého polního pokusu byl orientačně stanoven výnosový potenciál v t.ha⁻¹, kde na 1 ha bylo počítáno se 44 000 trsy (rostlinami).

5.7.3 Předpoklady pro sexuální křížení

U rostlin ve skleníku i v polním pokusu bylo provedeno reciproké křížení. Do pokusu byly zahrnuty tetraploidní genotypy somatických hybridů a tetraploidní referenční klony Solanum tuberosum ssp. tuberosum odolné k jednotlivým rasám Phytophthora infestans. Dále bylo provedeno opylení somatických hybridů pylom odrůd kulturního bramboru. Jednalo se o pyl odrůd Vendula, Bella, Evelin, Nomade a Valfí, který byl získán ve spolupráci s genovou bankou při Výzkumném ústavu bramborářském v Havlíčkově Brodě. U zralých poupat byly odstraněny prašníky a pyl byl štětečkem nanesen na blíznu.

5.7.3.1 Viabilita pylových zrn

Viabilita pylových zrn byla stanovena barvením preparátu Lugolovým roztokem (Wang et al., 2004). Lugolův roztok se používá pro barvení škrobových zrn, kde tmavě zbarvené pylové zrno je definováno jako životaschopné. Roztok se skládá z 5 % I₂ a 10 % KI, kde koncentrace iodu je 130 mg.ml⁻¹. Viabilita byla stanovena v procentech.
Viabilita pylových zrn byla statisticky vyhodnocena metodou analýzy rozptylu jednoduchého třídění v programu Statistica CZ (Statsoft verze 9.0).

5.7.4 Orientační stanovení obsahu solaninu a chaconinu v hlízách

Obsah vybraných alkaloidů byl stanoven ve spolupráci s Katedrou chemie FAPPZ ČZU v Praze. Bylo provedeno orientační stanovení pouze obsahu solaninu a chaconinu, jejichž limitní množství v hlízách kulturních odrůd brambor je 200 mg.kg\(^{-1}\) čerstvé hmoty hlíz i se slupkou (Rayburn et al., 1995). Analyzovány byly hlízy 9 genotypů, sklizené z polního pokusu v roce 2009 v lokalitě Praha 6 – Suchdol. Jednalo se o jeden genotyp Solanum bulbocastanum PIS 17, dihaploid S. tuberosum DH 165, rostliny vzniklé regenerací protoplastů pouze ze S. bulbocastanum - REG 5 a somatické hybridy REG 30 F, 34 F, 35 F, 38 F, 43 F a 44 F.

K 15 g omytých a osušených syrových hlíz ve slupce bylo přidáno 60 ml methanolu. Hlízy byly mixovány a suspenze byla poté kvantitativně převedena přes papírový filtr do 100 ml baňky a roztok byl doplněn methanolom na objem 100 ml. Roztok byl dále filtrován přes membránový bakteriologický filtr 0,45 µm pro odstranění zbylých nečistot. Obsah solaninu a chaconinu byl stanoven metodou kapalinové chromatografie na přístroji, jehož komponenty tvořil chromatografický systém pro HPLC - Ultimate 3000 RS (Dionex, USA) a hmotnostní detektor - 3200 QTRAP (Applied Biosystems, USA). Obsah solaninu a chaconinu byl stanoven v mg.kg\(^{-1}\) čerstvé hmoty a sušiny. Parametry stanovení sušiny v horkovzdušné sušárně byly 24 a 32 hodin při teplotě 105°C. Suma hodnot obsahu obou alkaloidů byla porovnána s limitním množstvím 200 mg.kg\(^{-1}\).
6 VÝSLEDKY A DISKUZE

6.1 Optimalizace metod izolace protoplastů

6.1.1 Izolace protoplastů z mezofylu listů

V rámci této etapy výzkumu byl sledován průběh uvolňování protoplastů z mezofylu listů dvou genotypů R7 a R11 z diferenciační sady klonů tetraploidního bramboru Solanum tuberosum ssp. tuberosum. Navážka u genotypu R7 činila 289,3 mg a u R11 287,8 mg. Koncentrace protoplastů v 1 ml byla stanovena v hodinových intervalech. Diference byly přepočítány na standardní navážku 1 g čerstvé listové biomasy a jsou uvedeny v příloze 8.

Byla provedena regresní a korelační analýza závislosti koncentrace vyizolovaných protoplastů na době extrakce (Obrázek 3). Výsledek u obou genotypů odpovídá charakteru logaritmovaní funkce a prakticky popisuje průběh enzymatické aktivity. Korelační koeficient má u genotypu R7 hodnotu r = 0,9623 a u R11 r = 0,9675, jedná se tedy o velmi silnou závislost na hladině významnosti α = 0,05.

Obrázek 3: Graf závislosti koncentrace uvolněných protoplastů na čase během působení celulolytických enzymů

![Graf závislosti koncentrace vyizolovaných protoplastů na délce inkubace](image)
6.1.2 Vliv složení médií pro kultivaci výchozího materiálu na výtěžnost a viabilitu protoplastů

Tabulka 7: Analýza rozptylu hlavních efektů vyhodnocená komplexně pro všechny měřené znaky

<table>
<thead>
<tr>
<th>Efekt</th>
<th>Test</th>
<th>Hodnota</th>
<th>F</th>
<th>Efekt SV</th>
<th>Chyba SV</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abs. člen</td>
<td>Wilksův</td>
<td>0,020149</td>
<td>206,6775</td>
<td>4</td>
<td>17</td>
<td>0,000000</td>
</tr>
<tr>
<td>Druh</td>
<td>Wilksův</td>
<td>0,050680</td>
<td>14,6286</td>
<td>8</td>
<td>34</td>
<td>0,000000</td>
</tr>
<tr>
<td>Médium</td>
<td>Wilksův</td>
<td>0,531508</td>
<td>1,5795</td>
<td>8</td>
<td>34</td>
<td>0,167694</td>
</tr>
<tr>
<td>Alar 85 [mg .l(^{-1})]</td>
<td>Wilksův</td>
<td>0,276416</td>
<td>3,8336</td>
<td>8</td>
<td>34</td>
<td>0,002631</td>
</tr>
</tbody>
</table>

Vzhledem k tomu, že pro třídící faktor druh vyšel průkazný F-test můžeme na hladině významnosti \(\alpha = 0,01 \) říci, že existuje alespoň jedna dvojice botanických druhů, která se mezi sebou statisticky významně liší ve všech sledovaných znacích. F-test vyšel průkazný i pro třídící efekt Alar 85, kde lze na hladině významnosti \(\alpha = 0,01 \) nalézt alespoň jednu dvojici koncentrací Alaru 85 v médiu, které se statisticky významně liší. Pro tato dvě třídící kritéria bylo provedeno podrobnější vyhodnocení Tukeyho metodou, kde už byl každý znak hodnocen zvlášť. Třídící efekt médium neměl vliv na sledované znaky, což se neshoduje s výsledky Bříza a Machová (1991), kteří uvádějí, že na SH médii měly rostliny kratší internodia a větší listy oproti MS médii. Důvodem neshody by mohla být kultivace odlišných genotypů příslušících jinému druhu rodu *Solanum* s odlišným stupněm ploidie. Autoři Bříza a Machová (1991) použili ke svým pokusům tetraploidní odrůdy bramboru Xenia a Bintje (*Solanum tuberosum* ssp. *tuberosum*).
Podrobnějším vyhodnocením průměrné délky rostlin v cm Tukeyho metodou byl na hladině významnosti $\alpha = 0,01$ prokázán statisticky velmi významný rozdíl mezi druhy *S. verrucosum* a *S. berthaultii* a mezi druhy *S. berthaultii* a *S. bulbocastanum* (Tabulka 8). Dále byl na stejné hladině významnosti prokázán statisticky velmi významný rozdíl mezi koncentrace Alaru 85 5 mg.l$^-1$ s AgNO$_3$ 7,5 mg.l$^-1$ a ostatními variantami (Tabulka 9). V rámci hodnocení průměrného počtu listů na jedné rostlině existuje na hladině významnosti $\alpha = 0,01$ statisticky velmi významný rozdíl mezi druhem *S. bulbocastanum* a ostatními dvěma druhy (Tabulka 10). V ostatních parametrech nebyl nalezen statisticky průkazný rozdíl.

Tabulka 8: Podrobné vyhodnocení Tukeyho metodou, kde proměnná je průměrná délka rostliny a třídícím faktorem druh

<table>
<thead>
<tr>
<th>Č. buňky</th>
<th>Druh</th>
<th>Tukeyův HSD test; proměnná Průměrná délka 1 rostliny [cm] (Tabulka médií s Alarem 85)</th>
<th>Přibližné pravděpodobnosti pro post hoc testy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(1) 7,6278</td>
<td>(2) 3,8922</td>
</tr>
<tr>
<td>1</td>
<td>S. verrucosum</td>
<td>0,001315</td>
<td>0,234629</td>
</tr>
<tr>
<td>2</td>
<td>S. berthaultii</td>
<td>0,001315</td>
<td>0,000163</td>
</tr>
<tr>
<td>3</td>
<td>S. bulbocastanum</td>
<td>0,234629</td>
<td>0,000163</td>
</tr>
</tbody>
</table>

Tabulka 9: Podrobné vyhodnocení Tukeyho metodou, kde proměnná je průměrná délka rostliny a třídícím faktorem koncentrace Alaru 85 a AgNO$_3$

<table>
<thead>
<tr>
<th>Č. buňky</th>
<th>Alar 85 [mg.l$^-1$]</th>
<th>Tukeyův HSD test; proměnná Průměrná délka 1 rostliny [cm] (Tabulka médií s Alarem 85)</th>
<th>Přibližné pravděpodobnosti pro post hoc testy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(1) 8,5814</td>
<td>(2) 7,6244</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0,537975</td>
<td>0,000531</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0,537975</td>
<td>0,005085</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>0,000531</td>
<td>0,005085</td>
</tr>
</tbody>
</table>
Tabulka 10: Podrobné vyhodnocení Tukeyho metodu, kde proměnná je průměrný počet listů na 1 rostlině a třídícím faktorem druh

<table>
<thead>
<tr>
<th>Č. buňky</th>
<th>Druh</th>
<th>{1} 10,903</th>
<th>{2} 8,8900</th>
<th>{3} 24,070</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S. verrucosum</td>
<td>10,903</td>
<td>0,530208</td>
<td>0,000145</td>
</tr>
<tr>
<td>2</td>
<td>S. berthaultii</td>
<td>8,8900</td>
<td>0,000145</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>S. bulbocastanum</td>
<td>24,070</td>
<td>0,000145</td>
<td></td>
</tr>
</tbody>
</table>

Z tabulek je patrné, že délka internodálních segmentů a počet listů jsou u *in vitro* rostlin druhové specifické.

Přepočtem hmotnosti čerstvé listové biomasy na 1 cm výšky rostliny byl prokázán statisticky velmi významný rozdíl na hladině významnosti α = 0,01, kde vykazují zvýšení hmotnosti biomasy listů rostliny kultivované na růstových regulátorách o koncentraci Alaru 85 5 mg.l⁻¹ s AgNO₃ 7,5 mg.l⁻¹ (78,75 mg.cm⁻¹) oproti variantám s nižší dávkou (48,66 mg.cm⁻¹) a bez morforegulátorů (7,2 mg.cm⁻¹) (Tabulka 11). Tyto rozdíly mohou být způsobeny jednak zvětšením listové plochy, jednak zmohutněním stonků. Tyto faktory však nebyly v této práci posuzovány. Z výsledků proto nelze určit, zda se přídavkem morforegulátorů zvětšuje listová plocha, jak uvádějí Bříza a Machová (1991). Koncentraci morforegulátorů Alaru 85 5 mg.l⁻¹ s AgNO₃ 7,5 mg.l⁻¹ bylo možné využít i při dlouhodobém uchovávání genotypů, kde by se prodloužil interval mezi pasážemi přibližně o 4 týdny v závislosti na genotypu, což umožní lepší organizaci práce při zpracovávání větších objemů *in vitro* kultur (Obrázek 4).
Pro vyhodnocení závislosti počtu vyizolovaných protoplastů na hmotnosti navážky listů byl použit model lineární regrese. Závislost nebyla prokázána, což potvrzuje i hodnota korelačního koeficientu $r = 0,09$, a proto nebyla hodnocena viabilita protoplastů v souvislosti s koncentrací vyizolovaných protoplastů v 1 ml suspenze přepočítanou na 1 g navážky listů. Z tohoto důvodu byla provedena regresní a korelační analýza závislosti životaschopnosti na reálné výtěžnosti protoplastů programem Statistica CZ (Statsoft verze 7.0). Modelem lineární regrese byla detekována pozitivní korelace ($r = 0,476$). Životaschopnost protoplastů je však pouze z 22,66 % vysvětlována jejich reálnou výtěžností. To znamená, že se na životaschopnosti protoplastů budou rovněž podílet další bližší nespecifikované faktory.

Tabulka 11: Podrobné vyhodnocení Tukeyho metodou, kde proměnná je průměrná hmotnost čerstvé biomasy na 1 cm délky rostliny a třídícím faktorem koncentrace Alaru 85 a AgNO$_3$

<table>
<thead>
<tr>
<th>Č. buňky</th>
<th>Tukeyův HSD test; proměnná Hmotnost na 1 cm (Tabulka 1)</th>
<th>Přibližné pravděpodobnosti pro post hoc testy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alar 85 [mg.l$^{-1}$]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>{1} 0,03720</td>
<td></td>
</tr>
<tr>
<td></td>
<td>{2} 0,04866</td>
<td></td>
</tr>
<tr>
<td></td>
<td>{3} 0,07875</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0,236810</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0,236810</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>0,000156</td>
</tr>
</tbody>
</table>

Tabulka 11: Podrobné vyhodnocení Tukeyho metodou, kde proměnná je průměrná hmotnost čerstvé biomasy na 1 cm délky rostliny a třídícím faktorem koncentrace Alaru 85 a AgNO$_3$. (tabulka 11: Detailed evaluation of Tukey's method, where the variable is the average fresh biomass on 1 cm of the plant and the classifying factor is the concentration of Alar 85 and AgNO$_3$.)
6.2 Výběr výchozího materiálu vhodného pro somatickou hybridizaci

6.2.1 Fenotypové zhodnocení odolnosti klonů k Phytophthora infestans

Hodnocená kolekce 136 genotypů vykazovala vysokou variabilitu v reakci na působení Phytophthora infestans (Příloha 11).

U všech 11 dihaploidů Solanum tuberosum ssp. tuberosum byla detekována 100 % náchylnost hodnocená pomocí metody listových terčíků. Vysokou náchylnost rovněž vykazovaly například genotypy Solanum polyadenium (99,5 % poškozené listové plochy), S. vernei 068 (57 %). Středně odolné byly například S. microdontum (27 %), odolné S. verrucosum (10 %) nebo většina klonů S. berthaultii. Klon S. berthaultii 260 nevykázaž žádný příznak infekce.

Podrobnější hodnocení 66 genotypů druhu Solanum bulbocastanum z původního počtu 79 s deklarovánou přítomností genu rezistence Rpi-blb1 ukázalo výraznou variabilitu reakce těchto genotypů na přítomnost patogena. U žádného se neprojevila fruktifikační aktivita patogena ani přítomnost mycelia. Mezi genotypy se vyskytovali tři jedinci, kteří nevykazovali jakékoliv známky infekce (bezpříznakovost, imunita). Ostatní genotypy reagovaly na
napadení hypersenzitivní reakcí, která byla rozsahem poškození listové plochy vysoce variabilní.

Hypersenzitivní reakcí bylo zasaženo 2 – 96 % hodnocené listové plochy terčíků. Z hlediska reakce těchto genotypů S. bulbocastanum na přítomnost použitého izolátu patogena je možné konstatovat rezistenci těchto klonů. Z hlediska vhodnosti tohoto materiálu pro využití v rezistentním šlechtění popřípadě pro somatickou hybridizaci lze doporučit jen genotypy s poškozením listové plochy maximálně do 25 %. Dojde-li k odumření pletiva na většině asimilační plochy listů, rostlina výrazně snižuje fotosyntetickou aktivitu, což by mělo za následek i zhoršování výnosových schopností.

Tabulka 12: Statistické hodnocení infekčních testů u 66 genotypů Solanum bulbocastanum

<table>
<thead>
<tr>
<th>Metoda infekce</th>
<th>Odolný / středně odolný genotyp</th>
<th>Náchylný genotyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inokulace listových terčíků</td>
<td>49</td>
<td>17</td>
</tr>
<tr>
<td>Inokulace in vitro rostlin (VÚB)</td>
<td>53</td>
<td>13</td>
</tr>
<tr>
<td>Koeficient korelace</td>
<td>R = 0,5465</td>
<td></td>
</tr>
<tr>
<td>Intenzita asociace</td>
<td>Q = 0,8432</td>
<td></td>
</tr>
</tbody>
</table>

6.2.2 Výběr vhodných genotypů z hlediska izolace protoplastů

Ze 136 genotypů rodu Solanum bylo vybráno 15 odolných genetických zdrojů a 11 dihaploidů bramboru uvedených v tabulce 13, jako potenciálně vhodný materiál pro tvorbu somatických hybridů. Dále u nich byla testována výtěžnost izolace nativních protoplastů. Výtěžnost protoplastů kolísala řádově mezi 1.10⁵ a 3.10⁶ . ml⁻¹, což se přibližně shodoje
s výsledky Greplová a Polzerová (2007) a Trabelsi et al. (2005). Množství získaných nativních protoplastů bylo zcela náhodné a vysoce kolísavé i u jedné varianty jednoho genotypu, což potvrdzují i základní statistické parametry, kdy směrodatná odchylka aritmetického průměru (S = 1.10⁶ protoplastů . ml⁻¹) hodnotu aritmetického průměru převyšuje (x = 744,6 tis. protoplastů . ml⁻¹). Výtěžnost protoplastů nebyla závislá na množství navážky, což bylo prokázáno v kapitole 6.1.2. U některých genotypů nebylo možné opakovaně získat dostatečné množství nativních protoplastů, což se shoduje se závěry Binding et al. (1977). V tomto případě by byla nutná nová optimalizace složení médií zejména z hlediska osmotického potenciálu a obsahu iontů v médiích pro izolaci a kultivaci protoplastů pro každý genotyp zvlášť a pravděpodobně by pak tato média nebyla kompatibilní s ostatními, což by ztížilo proces somatické hybridizace.
Tabulka 13: Seznam genotypů vybraných pro somatickou hybridizaci na základě infekčních testů odolnosti vůči Phytophthora infestans

<table>
<thead>
<tr>
<th>Genotyp</th>
<th>Poškození listové plochy (listové terčíky) [%]</th>
<th>Stupeň rezistence (listové terčíky)</th>
<th>Shoda</th>
<th>Genotyp</th>
<th>Poškození listové plochy (listové terčíky) [%]</th>
<th>Stupeň rezistence (in vitro rostliny - VÚB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB PIS 17 a</td>
<td>0,00</td>
<td>R R</td>
<td>ANO</td>
<td>S. BER 260</td>
<td>0,00</td>
<td>R</td>
</tr>
<tr>
<td>SB PIS 23</td>
<td>0,00</td>
<td>R R</td>
<td>ANO</td>
<td>S. VERU 299 a</td>
<td>9,00</td>
<td>R</td>
</tr>
<tr>
<td>SB PIS 40 a</td>
<td>2,20</td>
<td>R R</td>
<td>ANO</td>
<td>DH 165 a</td>
<td>100,00</td>
<td>S</td>
</tr>
<tr>
<td>SB PIS 41 a</td>
<td>0,00</td>
<td>R M</td>
<td>NE</td>
<td>DH 185 a</td>
<td>100,00</td>
<td>S</td>
</tr>
<tr>
<td>SB PIS 47 a</td>
<td>19,00</td>
<td>R R</td>
<td>ANO</td>
<td>DH 315 a</td>
<td>100,00</td>
<td>S</td>
</tr>
<tr>
<td>SB PIS 59</td>
<td>0,00</td>
<td>R M</td>
<td>NE</td>
<td>DH 318 a</td>
<td>100,00</td>
<td>S</td>
</tr>
<tr>
<td>SB PIS 60 a</td>
<td>8,33</td>
<td>R R</td>
<td>ANO</td>
<td>DH 322 a</td>
<td>100,00</td>
<td>S</td>
</tr>
<tr>
<td>SB PIS 61 a</td>
<td>47,00</td>
<td>M M</td>
<td>ANO</td>
<td>DH 323</td>
<td>100,00</td>
<td>S</td>
</tr>
<tr>
<td>SB PIS 66 a</td>
<td>13,33</td>
<td>R R</td>
<td>ANO</td>
<td>DH 324 a</td>
<td>100,00</td>
<td>S</td>
</tr>
<tr>
<td>SB PIS 70 a</td>
<td>0,00</td>
<td>R R</td>
<td>ANO</td>
<td>DH 329 a</td>
<td>100,00</td>
<td>S</td>
</tr>
<tr>
<td>SB PIS 71 a</td>
<td>23,00</td>
<td>R R</td>
<td>ANO</td>
<td>DH 387 a</td>
<td>100,00</td>
<td>S</td>
</tr>
<tr>
<td>SB PIS 73 a</td>
<td>6,67</td>
<td>R R</td>
<td>ANO</td>
<td>DH 388 a</td>
<td>100,00</td>
<td>S</td>
</tr>
<tr>
<td>SB PL 14</td>
<td>0,00</td>
<td>R -</td>
<td>-</td>
<td>DH 447 a</td>
<td>100,00</td>
<td>S</td>
</tr>
</tbody>
</table>

a úspěšná izolace protoplastů

6.3 Tvorba somatických hybridů

6.3.1 Fúze, kultivace a regenerace protoplastových kultur

Celkem byla provedena kultivace protoplastů u 19 genotypů rodu Solanum, ze kterých bylo 17 genotypů v 16 různých kombinacích použito pro fúzi protoplastů v elektrickém poli. Bylo kultivováno celkem 141 Petriho misek, z nichž 74 obsahovalo fúzovaný materiál. Každá Petriho miska obsahovala 400 µl suspenze protoplastů a 1200 µl kultivačního média. Výsledná koncentrace protoplastů při kultivaci činila přibližně 100 000 ks.ml⁻¹ média.

Regenerace buněčné stěny proběhla během 2 – 3 dnů. První mitózu prodělaly buňky přibližně do 8 – 12 dnů od počátku kultivace stejně jako u Fish et al. (1988), zatímco Mattheji a Puíte (1992) uvádějí nástup první mitózy již po třech dnech kultivace a Binding et al. (1978)

U některých kalusů docházelo během jejich růstu k produkci sekundárních metabolitů. Jejich nadměrná produkce vedla ke zhnědnutí kultivačního média a odumření všech kalusů v Petriho misce. Produkci těchto látek se nepodařilo omezit ani přenesením kalusů na nové médium. Fleck et al. (1979) uvádějí, že izolace protoplastů pomocí celulolytických enzymů spouští celou řadu metabolických změn, které ve výsledku mohou vést k de novo syntéze stresem vyvolaných látek. Vzhledem k tomu, že k těmto případům docházelo zcela náhodně a nezávisle na genotypu, čase a absolvolání elektrofúze, lze se domnívat, že je produkce těchto látek ovlivněna obtížně kontrolovatelnými faktory.
Tabulka 14: Počet a původ rostlin vzniklých in vitro regenerací z protoplastových kultur

<table>
<thead>
<tr>
<th>Genotyp / Kombinace</th>
<th>Fúze</th>
<th>Číslo kalusu</th>
<th>Počet prýtů</th>
<th>Název regenerované rostliny</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. blb PIS 17</td>
<td>NE</td>
<td>1</td>
<td>6</td>
<td>REG 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>REG 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>7</td>
<td>REG 36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>1</td>
<td>REG 55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>S. blb PIS 41</td>
<td>NE</td>
<td>7</td>
<td>5</td>
<td>REG 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>1</td>
<td>REG 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>2</td>
<td>REG 10</td>
</tr>
<tr>
<td>S. tuber R2</td>
<td>NE</td>
<td>10</td>
<td>16</td>
<td>REG 20 F</td>
</tr>
<tr>
<td>S. blb PIS 60 + DH 388</td>
<td>ANO</td>
<td>11</td>
<td>11</td>
<td>REG 34 F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>2</td>
<td>REG 35 F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>S. blb PIS 17 + DH 387</td>
<td>ANO</td>
<td>14</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>S. veru 299 + DH 322</td>
<td>ANO</td>
<td>15</td>
<td>1</td>
<td>REG 24 F</td>
</tr>
</tbody>
</table>

6.4 Analýzy DNA pro detekci somatických hybridů

6.4.1 RAPD analýza

Mezidruhová variabilita byla hodnocena primery OPG 8, OPN 3, 5, 8, 11, 15 a 18. Na základě RAPD profilů dekamerického primeru OPN 18 byla provedena shluková analýza UPGMA v programu Quantity One (Bio-Rad, USA). Tento primer se ukázal vhodným pro tuto analýzu z důvodu produkce malého počtu amplifikovaných fragmentů, které však poskytovaly dostatečný polymorfismus umožňující odlišit rodičovské komponenty i následné potenciální somatické hybridy. Výsledný dendrogram (Obrázek 5) zahrnuje tři základní shluky genotypů. Do prvního shluku byly seřízeny všechny analyzované genotypy druhu Solanum bulbocastanum. Do druhé skupiny byla zařazena uniformní podskupina genotypů druhu S. polyadenium, a dále pak genotypy S. microdontum 049, S. verrucosum 299 a diploidní S. tuberosum DH 322. Třetí skupina vykazovala vyšší variabilitu oproti dvěma předchozím. Byla do ní hlavně přiřazena většina diploidních klonů S. tuberosum a zbývající genetické zdroje rodu Solanum z testované kolekce. Z výsledků shlukové analýzy je patrné, že RAPD primer OPN 18 lze využít pro detekci vnitrodruhové i mezidruhové variability a tím je využitelný v konkrétních případech detekce somatických hybridů bramboru.
Obrázek 5: Shluková analýza genotypů na základě amplifikace RAPD markerů primerem OPN 18

Analýzou DNA profilů RAPD primeru OPN 11 byly rovněž spolehlivě odlišeny jednotlivé druhy rodu *Solanum* (Obrázek 6). Proto se tento primer ukazuje jako vhodný pro odlišení potenciálních somatických mezidruhových hybridů. Výsledky byly statisticky zpracovány formou dendrogramu (Obrázek 7).
Obrázek 6: Detekce polymorfismů DNA genotypů rodu *Solanum* primerem OPN 11

M – standard Gene Ruller 100 bp Plus (Fermentas, Litva), SB PIS 60 + DH 388 – směs DNA genotypů *S. bulbocastanum* 60 a dihaploidu *S. tuberosum* 388, S. ? – genotyp příslušící k neznámému druhu rodu *Solanum*

Obrázek 7: Shluková analýza genotypů na základě RAPD markerů (primer OPN 11)

PIS 60 + DH 388 – směs DNA genotypů *S. bulbocastanum* 60 a dihaploidu *S. tuberosum* 388

Na základě těchto analýz bylo zjištěno, že 9 genotypů *in vitro*, uváděných jako *S. pinnatisectum*, vykazovalo zcela odlišné elktroforetické profily RAPD markerů (OPG 8, OPN 3, 5, 8, 11, 15 a 18), ve srovnání s referenčním klonem *S. pinnatisectum* PI275235. Morfologickým srovnáním rostlin ve skleníku a jejich porovnáním s literaturou (Correll, 1962) bylo zjištěno, že jde o 9 genotypů *S. polyadenium* (Obrázek 8). Chyba v identifikaci
druhové příslušnosti genetických zdrojů není ojedinělá. Příkladem je Dinu et al. (2005), který uvádí *S. bulbocastanum* pod kódovým označením *S. polyadenium* (PI310963). Výsledky naznačují potřebu revize a detailní charakterizace evropských sbírek genetických zdrojů rodu *Solanum* introdukovaných z genových bank v USA. Tyto výsledky byly předány genové bance při Výzkumném ústavu bramborářském s.r.o. v Havlíčkově Brodě.

Obrázek 8: Morfologické porovnání *S. pinnatisectum* PI275235 (vlevo) a *S. polyadenium* PI310963 (vpravo)

6.4.1.1 Detekce somaklonální variability

RAPD analýza byla dále použita k detekci případné somaklonální variability, která hypoteticky může nastat v potomstvích odvozených regenerací z protoplastových kultur u kterých neproběhla fúze. Pomocí 70 dekamerických primerů sad OPN, OPH, OPM, OPF a OPG byla prokázána 100 % identita RAPD produktů rostliny vzniklé regenerací z protoplastové kultury (REG 1) a donora buněk *S. bulbocastanum* 17 (Obrázek 9). V těchto
70 dvojicích porovnávaných vzorků DNA nebyl nalezen ani jeden RAPD produkt, který by vykazoval polymorfismus.

Dále byly hodnoceny rostliny vzniklé regenerací z protoplastové kultury *S. bulbocastanum* 41 (REG 5, 9 a 11). Pomoce 36 dekamerických primerů sad OPN, OPF a OPH byla opět prokázána 100 % identita RAPD produktů.

Z těchto výsledků je patrné, že byť je metoda RAPD často považována za obtížně reprodukovatelnou a málo spolehlivou (Jones *et al*., 1997), pro účely detekce somaklonální variability se jeví za standardních podmínek jako použitelná i dostatečně opakovatelná.

Obrázek 9: Detekce somaklonální variability sadou RAPD primerů OPN

6.4.2 Analýza jaderné DNA

CAPS markery SPUD237 a GP21 jsou lokalizovány v jaderné DNA na pátém chromozómu v genové vazbě s genem *Nb* udělujícím bramboru hypersenzitivní rezistenci k viru X a lokusem genu rezistence *R1* k *Phytophthora infestans* (de Jong *et al*., 1997).

Restrikčním štěpením amplikonu SPUD237 enzymem *AluI* byl v analyzované kolekci detekován polymorfismus DNA, kdy byly určeny tři alelické sestavy z hlediska přítomnosti a lokalizace restrikčního místa enzymu *AluI* (Obrázek 10). Restrikčním štěpením amplikonu GP21 enzymem *AluI* byla detekována mezidruhová i vnitrodruhová variabilita (Obrázek 11).
Pomocí těchto výsledků lze prokázat, zda došlo k fúzi jader u rostlin vzniklých somatickou hybridizací. Nicméně, výsledky jsou aplikovatelné pouze v určité kombinaci genotypů jako je například v rámci markeru SPUD237 S. bulbocastanum 10 + dihaploid S. tuberosum 322 nebo S. verucossum 299 + dihaploid S. tuberosum 387. V této situaci by měl výsledný genotyp obsahovat dvě různé alely a na výsledném elektroforeogramu by se tato skutečnost projevila třemi pozorovatelnými fragmenty DNA. Z obrázků 10 a 11 je však patrné, že na základě těchto markerů je možno v rámci hodnoceného souboru vytvořit poměrně širokou škálu kombinací rodičů somatických hybridů, které by následně bylo velmi snadné těmito markery identifikovat.

Obrázek 10: Detekce polymorfismů jaderné DNA u genotypů rodu Solanum restrikčním štěpením produktů CAPS markeru SPUD237 enzymem AluI

M – standard Gene Ruller 100 bp Plus (Fermentas, Litva)
Obrázek 11: Detekce polymorfismů jaderné DNA u genotypů rodu *Solanum* restrikčním štěpením produktů CAPS markeru GP21 enzymem *AluI*.

Markery SPUD237 a GP21 nelze použít pro detekci aktuálně získaných potenciálních somatických hybridů z důvodu realizovaných kombinací rodičovských genotypů, které nejsou těmito markery odlišitelné.

6.4.3 Analýza chloroplastové a mitochondriální DNA

6.4.3.1 Optimalizace podmínek amplifikace

V rámci této etapy práce musela být nejprve provedena optimalizace podmínek amplifikace jednotlivých markerů. Z tohoto důvodu je zoptimalizovaný metodický postup součástí kapitoly výsledky a diskuze.

Složení reakční směsi bylo pro všechny markery stejné. 25 µl reakční směsi obsahovalo 1x reakční pufr (10x *Taq* Buffer with KCl; *Fermentas*, Litva), 2,5 mM MgCl₂, 0,3 mM dNTP, 0,32 µM od každého primeru, 1 jednotka *Taq* polymerázy (*Fermentas*, Litva) a 20 ng DNA.

Teplotní a časový profil PCR reakce byl následující: 180 s při teplotě 94°C pro první denaturaci následovanou 30 PCR cykly (40 s při 94°C pro denaturaci, 30 s při teplotě specifické pro daný pár primerů pro jejich nasedání (annealing), 60 s při 72°C pro extenzí) a...
360 s při teplotě 72°C pro finální extenzi. Optimalizované teploty annealingu pro jednotlivé páry primerů jsou uvedeny v tabulce 6.

6.4.3.2 Detekce variability

Pomocí elektroforetické separace PCR produktů hodnocené kolekce genotypů rodu *Solanum* v 1,5 % agarózovém gelu byl detekován polymorfismus pouze u markeru Cp3 (trnL/trnL) (Obrázek 12). Prokazatelně se lišil pouze genotyp *Solanum mochiquense* od ostatních genotypů. U ostatních markerů nebyl na horizontální agarózové elektroforéze u hodnocené kolekce detekován délkový polymorfismus amplikonů. Proto bylo pro další analýzu použito restrikční štěpení vybranými restrikčními enzymy.

Obrázek 12: Variabilita PCR produktů markeru Cp3 (trnL/trnL)

M – standard Gene Ruller 100 bp Plus (Fermentas, Litva)
6.4.3.2.1 Restrikční štěpení

Bylo provedeno hodnocení variability restrikčním štěpením produktů amplifikace markerů Mt5 (cox1/cox1) a Cp3 (trnL/trnL). Použité restrikční endonukleázy jsou uvedeny v tabulce 15.

Tabulka 15: Výsledky restrikčního štěpení mtDNA a cpDNA markerů (štěpení při 37°C)

<table>
<thead>
<tr>
<th>Marker</th>
<th>1,5 % agaróza - polymorfismus</th>
<th>Restrikční enzym</th>
<th>Rozpoznávací sekvence</th>
<th>Štěpení</th>
<th>Polymorfismus (mezidruhový)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mt5</td>
<td>NE</td>
<td>Alul</td>
<td>AG↓CT</td>
<td>ANO</td>
<td>S. mochiquense</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EcoRV</td>
<td>GAT↓ATC</td>
<td>NE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drai</td>
<td>TTT↓AAA</td>
<td>NE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EcoRI</td>
<td>G↓AATTC</td>
<td>NE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hinfl</td>
<td>G↓ANTC</td>
<td>ANO</td>
<td>S. mochiquense</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Msp1 (Hpa II)</td>
<td>C↓CGG</td>
<td>NE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rsal</td>
<td>GT↓AC</td>
<td>ANO</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xbal</td>
<td>T↓CTAGA</td>
<td>NE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CfoI</td>
<td>GCG↓C</td>
<td>ANO</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AccI</td>
<td>GT↓(A,C)(T,G)AC</td>
<td>NE</td>
<td></td>
</tr>
<tr>
<td>Cp3</td>
<td>ANO</td>
<td>Rsal</td>
<td>GT↓AC</td>
<td>NE</td>
<td>S. mochiquense</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alul</td>
<td>AG↓CT</td>
<td>ANO</td>
<td>S. mochiquense</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HhaI</td>
<td>GCG↓C</td>
<td>NE</td>
<td>S. mochiquense</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ehei (Nar I)</td>
<td>GG↓CGCC</td>
<td>NE</td>
<td>S. mochiquense</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BsuRI (Hae III)</td>
<td>GG↓CC</td>
<td>ANO</td>
<td>S. mochiquense</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EcoRV</td>
<td>GAT↓ATC</td>
<td>NE</td>
<td>S. mochiquense</td>
</tr>
</tbody>
</table>

Marker Mt5 (cox1/cox1) amplifikuje 1360 bp dlouhou oblast intronu mitochondriální cytochrom c oxidázy podjednotky 1 (Duminil et al., 2002). Enzym Hinfl poskytl polymorfismus rozštěpených PCR produktů umožňující odlišení druhu S. mochiquense od ostatních genotypů (Obrázek 13). Restrikční enzymy Alul, Rsal a CfoI poskytovaly uniformní produkty štěpení. Ostatní restriktázy ve studovaném intronu nenašly odpovídající restrikční místo.
Obrázek 13: Restrikční štěpení PCR produktu markeru Mt5 (cox1/cox1) enzymem *HinfI*

![Image of gel electrophoresis](image_url)

M – standard Gene Ruller 100 bp (Fermentas, Litva)

Marker Cp3 (trnL/trnL) amplifikuje oblast intronu chloroplastové DNA o velikosti 557 bp (Taberlet et al., 1991). Enzymem *BsuRI (Hae III)* bylo nalezeno štěpné místo pouze u PCR produktu S. mochiquense (Obrázek 14). Restrikčním štěpením enzymem *AluI* nebyl nalezen polymorfismus mezi hodnocenými genotypy a ostatní restriktázy studovaný intron neštěpily.
Obrázek 14: Restrikční štěpení PCR produktu markeru Cp3 (trnL/trnL) enzymem BsuRI (HaeIII)

M – standard Gene Ruller 100 bp Plus (Fermentas, Litva)

Markery Mt5 (cox1/cox1) a Cp3 (trnL/trnL) lze využít pro detekci somatických hybridů pouze v případě fúze protoplastů, kde by bylo jednou rodičovskou komponentou Solanum mochiquense. Tato kombinace však nebyla v disertační práci použita.

6.4.3.2.2 SSCP analýza

Pomocí primerů vysoce specifických k mtDNA byl amplifikován mitochondriální intergenový mezerník oddělující geny pro 5S a 18S rRNA o velikosti 273 bp označovaný v této práci jako Mt3 (rrn5/rrn18-1) (Duminil et al., 2002; Hu a Luo, 2006). Na horizontální agarózové elektroforéze nebyl u hodnocené kolekce detekován délkový polymorfismus DNA. SSCP analýzou tohoto regionu byly jednoznačně odlišeny genotypy druhu S. bulbocastanum od genotypů ostatních druhů (Obrázek 15). Nebyla zaznamenána variabilita v SSCP profilu mezi původními genotypy S. bulbocastanum (17 a 41) a jejich protoplastovými regeneranty (REG 1 a 5). Pokud by pomocí PCR došlo k amplifikaci pouze jednoho DNA fragmentu, pomocí SSCP analýzy by se fragment separoval na tři, tj. dvě jednovláknové vlásenky a jeden homoduplex. Vzhledem k tomu, že je z elektroforeogramu na obrázku 15 patrný větší počet fragmentů u genotypů Solanum bulbocastanum, nabízí se dvě možnosti vysvětlení. Rosypal
(1996) a Flegr (2005) uvádějí, že struktura a uspořádání mitochondriálního genomu je značně variabilní, dokonce u stejného organismu. To naznačuje potenciální možnost variability sledovaného PCR produktu markeru Mt3 i v rámci jednoho genotypu, což může vést ke vzniku heteroduplexů. Druhou možností jsou nespecifické amplifikace, ke kterým během PCR může docházet. Pro potvrzení popřípadě vyvrácení těchto možností byl marker Mt3 dále podroben analýze metodou DGGE.

Obrázek 15: Detekce polymorfismů mtDNA u genotypů rodu Solanum markerem Mt3 (rrn5/rrn18-1) pomocí metody SSCP

Marker Cp4 (trnL/trnF) amplifikuje oblast intergenového mezerníku chloroplastové DNA o velikosti 418 bp (Taberlet et al., 1991). Na horizontální agarózové elektroforezě, vertikální polyakrylamidové gelové elektroforezě a SSCP analýzou nebyl u hodnocené kolekce detekován ani délkový ani bodový polymorfismus v rámci tohoto úseku. Proto byly PCR produkty tohoto markeru dále podrobeny analýze metodou DGGE.
6.4.3.2.3 DGGE analýza

Výsledkem DGGE analýzy v perpendikulárním gradientu byly u hodnocených PCR produktů markerů Mt1 (atp9/atp9), Mt3 (rrn5/rrn18-1), Cp4 (trnL/trnF) a Cp7 (trnV/16SrRNA) zaznamenané nestandardní výsledky v podobě nespojitých denaturačních křivek (Obrázek 16a). Rickwood a Hames (1990) uvádějí použití GC-svorky, což je úsek molekuly DNA bohatý na G a C báze, který má vysokou teplotu tání a tím je obtížně denaturovatelný. Adaptací jednoho z primerů použitého páru o tuto svorku na 5’ konci byly nedostatky této primární analýzy odstraněny (Obrázek 16b). Konkrétně byla použita GC-svorka 5’-CGC CCG CCG CGC CCC GCG CCC GTC CCG CCC CCC G-3’ podle Mota et al. (2008), která byla připojena na 5’ konec primerů Mt1 F, Mt3 F, Cp4 F a Cp7 F.

Pro analýzu byla použita směs amplikonů genotypů Solanum bulbocastanum PIS 17, S. berthaultii 260, S. verrucosum 299, S. chacoense, S. mochiquense a dihaploid S. tuberosum ssp. tuberosum 165, u kterých lze předpokládat, že se od sebe geneticky liší.

Obrázek 16: Elektroforeogram perpendikulárního gelu pro analýzu PCR produktů markeru Mt3 (rrn5/rrn18-1)

7 % polyakrylamidový gel, koncentrace denaturantu 0 % - 100 %, parametry separate: 120 min při teplotě 56°C a napětí 150V v cele DCode (Bio-Rad), 16a – produkty markeru Mt3 o velikosti 273 bp, 16b – produkty markeru Mt3 s navázanou svorkou na 5’ konci primeru Mt3 F o velikosti 313 bp

PCR produkt markeru Mt1 (atp9/atp9) o délce 319 bp byl analyzován v 7 % polyakrylamidovém perpendikulárním gelu s gradientem denaturantu 0 % - 100 %.
V analyzované sekvenci nebyl zjištěn polymorfizmus, což naznačuje konzervovanost této sekvence v hodnocené kolekci rodu *Solanum*.

PCR produkt markeru Mt3 (rrn5/rrn18-1) o velikosti 313 bp byl analyzován za stejných podmínek a se stejnými výsledky jako marker Mt1 (Obrázek 16b). Tyto výsledky rovněž vylučují variabilitu produktů tohoto markeru v rámci jednoho genotypu. Analýzou variability tohoto markeru metodou SSCP bylo potvrzeno, že se pravděpodobně jedná o nespecifické amplifikace, ke kterým došlo v průběhu PCR.

Za předpokladu biparentální dědičnosti složek cytoplasmy při somatické hybridizaci nelze markery Mt1 a Mt3 použít pro detekci somatických hybridů.

PCR produkt markeru Cp4 (trnL/trnF) o velikosti 458 bp byl analyzován v 6 % polyakrylamidovém perpendikulárním gelu s gradientem denaturantu 20 % - 70 %. Z výsledků uvedených na obrázku 17 je patrné, že sekvence PCR produktu tohoto markeru je polymorfní. Šipka na obrázku označuje optimální koncentraci denaturačních činidel umožňujících odlišení mutantních alel. Proto byl tento marker podroben analýze metodou CDGE.

Obrázek 17: Elektroforeogram perpendikulárního gelu pro analýzu PCR produktů markeru Cp4 (trnL/trnF)

6 % polyakrylamidový gel, koncentrace denaturantu 20 % - 70 %, parametry separace: 120 min při teplotě 56°C a napětí 150V v cele DCode (Bio-Rad)

PCR produkt markeru Cp7 (trnV/16SrRNA) o velikosti 337 bp byl analyzován v 7 % polyakrylamidovém perpendikulárním gelu s gradientem denaturantu 20 % - 70 %. Výsledky metody DGGE prokázaly, že je sekvence PCR produktu tohoto markeru polymorfní, a proto byl tento marker podroben analýze metodou CDGE (Obrázek 18).
Obrázek 18: Elektroforeogram perpendikulárního gelu pro analýzu PCR produktů markeru Cp7 (trnV/16SrRNA)

7 % polyakrylamidový gel, koncentrace denaturantu 20 % - 70 %, parametry separace: 120 min při teplotě 56°C a napětí 150V v cele DCode (Bio-Rad)

6.4.3.2.4 CDGE analýza

Pro podrobnější vyhodnocení markeru Cp4 (trnL/trnF) u analyzované kolekce genotypů rodu Solanum byl použit 5,5 % akrylamidový konstantní denaturační gel o koncentraci denaturantu 40 %. Separace konstantní gradientové elektroforézy probíhala 230 min při teplotě 56°C a napětí 100V v cele DCode (Bio-Rad). Byla detekována mezidruhová variabilita v hodnocené kolekci 16 druhů rodu Solanum (Obrázek 19). Analýzou tohoto markeru byly nalezeny tři alely lišící se elektroforetickou mobilitou. Vnitrodruhová variabilita byla sledována u genotypů druhu Solanum bulbocestanum, Solanum vernei a dihaploidů Solanum tuberosum ssp. tuberosum. Ani v jednom z uvedených případů nebyla variabilita uvnitř druhu potvrzena.
Obrázek 19: Variabilita PCR produktů markeru Cp4 (trnL/trnF) detekovaná pomocí CDGE analýzy

5,5% polyakrylamidový gel o konstantní koncentraci denaturantu 40%, parametry separace: 230 min při teplotě 56°C a napětí 100V v cele DCode (Bio-Rad)

Tabulka 16: Vybrané charakteristiky analyzovaných druhů rodu *Solanum*

<table>
<thead>
<tr>
<th>Druh</th>
<th>Ploidie 2n</th>
<th>EBN</th>
<th>Alela markeru Cp4</th>
<th>Oblast původu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solanum tuberosum spp. tuberosum</td>
<td>48</td>
<td>4</td>
<td>A</td>
<td>Peru, Bolivie, Chile</td>
</tr>
<tr>
<td>Solanum stenotomum spp. goniocalyx</td>
<td>48</td>
<td>2</td>
<td>A</td>
<td>El Mantaro - Peru</td>
</tr>
<tr>
<td>Solanum sucrene</td>
<td>48</td>
<td>4</td>
<td>A</td>
<td>Potosi - Bolivie</td>
</tr>
<tr>
<td>Solanum tuberosum spp. andigenum</td>
<td>48</td>
<td>4</td>
<td>A</td>
<td>Peru</td>
</tr>
<tr>
<td>Solanum polytrichon</td>
<td>48</td>
<td>2</td>
<td>A</td>
<td>Mexico</td>
</tr>
<tr>
<td>Solanum pinnatisectum</td>
<td>24</td>
<td>1</td>
<td>A</td>
<td>Jalisco - Mexiko</td>
</tr>
<tr>
<td>Solanum verucossum</td>
<td>24</td>
<td>2</td>
<td>A</td>
<td>Michoacan - Mexiko</td>
</tr>
<tr>
<td>Solanum bulbocastanum</td>
<td>24</td>
<td>1</td>
<td>B</td>
<td>Federal district -Mexiko</td>
</tr>
<tr>
<td>Solanum polyadenium</td>
<td>24</td>
<td>1</td>
<td>B</td>
<td>Michoacan - Mexiko</td>
</tr>
<tr>
<td>Solanum phureja</td>
<td>24</td>
<td>2</td>
<td>B</td>
<td>Kolumbie</td>
</tr>
<tr>
<td>Solanum berthaultii</td>
<td>24</td>
<td>2</td>
<td>C</td>
<td>Cochamba - Bolivie</td>
</tr>
<tr>
<td>Solanum chacoense</td>
<td>24</td>
<td>2</td>
<td>C</td>
<td>Argentina</td>
</tr>
<tr>
<td>Solanum microdontum</td>
<td>24</td>
<td>2</td>
<td>C</td>
<td>Argentina</td>
</tr>
<tr>
<td>Solanum vernei</td>
<td>24</td>
<td>2</td>
<td>C</td>
<td>Argentina</td>
</tr>
<tr>
<td>Solanum yungasense</td>
<td>24</td>
<td>2</td>
<td>C</td>
<td>Argentina</td>
</tr>
<tr>
<td>Solanum mochiquense</td>
<td>24</td>
<td>1</td>
<td>C</td>
<td>Peru</td>
</tr>
</tbody>
</table>

Obrázek 20: Dendrogram sestavený na základě podobnosti PCR produktů markeru Cp4 (trnL/trnF) analyzovaných metodou CDGE

Str. diagram pro 18 případů

Jednoduché spojení

Euklid. vzdálenosti

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Pro podrobnější vyhodnocení markeru Cp7 (trnV/16SrRNA) u analyzované kolekce genotypů rodu *Solanum* byl použit 6 % akrylamidový konstantní denaturační gel o koncentraci denaturantu 55 %. Separace konstantní gradientové elektroforézy probíhala 220 min při teplotě 56°C a napětí 100V v cele DCode (Bio-Rad). U každého genotypu byl detekován identický soubor dvou fragmentů DNA, což jednak objasnilo výskyt dvou posunutých křivek v průběhu perpendikulární analýzy a zároveň vyloučilo předpokládaný DGGE polymorfismus (Obrázek 21). Pro úplné vyloučení mezidruhového polymorfismu markeru byla provedena sekvenace obou fragmentů.

Obrázek 21: Variabilita PCR produktů markeru Cp7 (trnV/16SrRNA) detekovaná pomocí CDGE analýzy

![Variabilita PCR produktů markeru Cp7](image)

6 % polyakrylamidový gel o konstantní koncentraci denaturantu 55 %, parametry separace: 220 min při teplotě 56°C a napětí 100V v cele DCode (Bio-Rad)

6.4.3.3 Stanovení sekvencí vybraných markerů

6.4.3.3.1 Marker Mt1

Marker Mt1 (atp9/atp9) amplifikuje oblast intronu mitochondriální DNA o velikosti 279 bp (Duminil *et al.*, 2002). Vzhledem k tomu, že polymorfismus tohoto fragmentu nebyl detekován žádnou z molekulárních analýz použitých v této práci, bylo přistoupeno k sekvenování pouze pro potvrzení stávajících výsledků. Přímou oboustrannou sekvenaci se podařilo osekvenovat pouze 5′ – 3′ vlákno fragmentu na základě primeru Mt1 F u genotypů
S. bulbocastanum PIS 17 a dihaploidu S. tuberosum ssp. tuberosum DH 165. Opakovaná sekvenace 3’ – 5’ vlákna fragmentu na základě primeru Mt1 R nebyla úspěšná. Z tohoto důvodu se nepodařilo získat kompletní sekvenci žádného z fragmentů uvedených genotypů. Získané sekvence však mezi sebou vykazovaly 100 % homologii.

Sekvence obou fragmentů byly porovnány s nukleotidovou databází NCBI. Osekvenovaný fragment genotypu S. bulbocastanum o velikosti 142 bp vykazoval 100 % homologii se sekvencemi jednoho genotypu druhu Capsicum annuum GU357549.1 a Solanum tuberosum ssp. tuberosum X63610.1 a se dvěma genotypy druhů Lycopersicum esculentum FJ374974.1, X54409.1 a Nicotiana tabaccum BA000042.1, X04019.1.

Osekvenovaný fragment dihaploidu S. tuberosum ssp. tuberosum DH 165 o velikosti 191 bp vykazoval 100 % homologii pouze se sekvencí genotypu druhu Lycopersicum esculentum X54409.1. Dále byla detekována 91 – 99 % homologie se 100 sekvencemi v databází náleţících zástupců 40 druhů nejen z čeledi Solanaceae, u kterých byla tato sekvence analyzována. Mezi genotypy, u kterých bylo moţné porovnat celý úsek 191 bp sekvence, patřily zástupci druhů Lycopersicum esculentum (100 % homologie), Nicotiana tabaccum BA000042.1, X04019.1 (99 %), Petunia hybridra X05807.1 (98 %), Vitis vinifera GQ220323.1, FM179380.1 (93 %), Malus x domestica D37958.1 (93 %), Diplotaxis muralis AB243572.1 (92 %), Brassica napus AP006444.1, D13696.1 (92 %) a Brassica rapa AC172860.1 (92 %). U ostatních genotypů bylo moţné porovnat pouze část sekvence z důvodu neúplnosti sekvencí v databázi NCBI. I zde byla potvrzena 91 – 100 % homologie v částech sekvencí například u genotypů druhů Capsicum annuum GU357549.1, Camellia sinensis DQ461974.1, Helianthus annuus X51895.1 a AF258785.1, Arabidopsis thaliana Y08501.2 a D82062.1, Cucurbita pepo GQ856148.1, Oryza sativa BA000029.3 a DQ167400.1, Triticum aestivum AP008982.1, Triticum durum X80469.1, Secale cereale X99020.1, Hordeum vulgare X74365.1, Beta vulgaris DQ381444.1 apod. Z těchto výsledků vyplývá, že tento intergenový mezerník vykazuje mezi druhy různých čeledí relativně nízkou variabilitu, z čehoţ lze usuzovat na vysokou míru konzervovaností napříč rostlinnou říší.

6.4.3.3.2 Marker Mt3

Marker Mt3 (rnn5/rnn18-1) amplifikuje oblast intergenového mezerníku mitochondriální DNA o velikosti 273 bp. Vzhledem k tomu, že polymorfismus tohoto fragmentu nebyl detekován žádnou z molekulárních analýz pouţitých v této práci, bylo přistoupeno k sekvenování pouze pro potvrzení stávajících výsledků. Byla provedena přímá
oboustranná sekvenace fragmentu u genotypů *S. berthaultii* 260, *S. bulbocastanum* PIS 17 a dihaploidu *S. tuberosum* ssp. *tuberosum* DH 165.

Fragmenty mezi sebou vykazovaly 100 % homologii. Srovnáním této sekvence s databází NCBI byla detekována 100 % homologie pouze se sekvencí genotypu druhu *Nicotiana tabaccum* BA000042.1. Dále mezi genotypy, u kterých bylo možné porovnat celou sekvenci, patřily pouze zástupci druhů *Vitis vinifera* GQ220326.1, XR077859.1, FM179380.1 (95 % homologie), *Dunia sinensis* AJ431632.1, AJ431631.1, AJ431630.1 (94 %), *Citrus maxima* FJ356258.1 (93 %) a *Carica papaya* EU431224.1 (90 %). Vzhledem k tomu, že databáze neobsahovala analyzovanou sekvenci žádných jiných druhů z čeledi *Solanaceae* a jen velmi málo ostatních rostlinných druhů, u kterých bylo možné porovnat pouze sekvence do velikosti 82 bp, nelze z těchto výsledků vyvozovat konkrétní závěry.

6.4.3.3 Marker Cp3

U 557 bp produktu markeru Cp3 (*trnL/trnL*) byl pomocí horizontální agarózové elektroforézy detekován délkový polymorfismus (Obrázek 12). Analyzovaný fragment byl u genotypu druhu *Solanum mochiquense* o několik bází delší než fragmenty ostatních genotypů. Pro přesnou identifikaci polymorfismu byla provedena sekvenace fragmentu u tohoto genotypu a jako kontroly byly použity genotypy *S. berthaultii* 260, dihaploid *S. tuberosum* ssp. *tuberosum* DH 165 a *S. bulbocastanum* PIS 17.

Sekvenací byl u genotypu *S. mochiquense* detekován v pozici 448 inzert o velikosti 18 bp. Inzert vznikl duplikací části sekvence počínající v této pozici jak je patrno z obrázku 22. V důsledku přítomnosti štěpného místa pro enzym *BsuRI (Hae III)* GG↓CC uvnitř inzertu, *S. mochiquense* obsahuje dvě štěpná místa pro tento enzym zatímco ostatní genotypy pouze jedno. Z tohoto důvodu byl u *S. mochiquense* restrikčním štěpením detekován fragment o 18 bp kratší než u ostatních genotypů (Obrázek 14). Porovnáním celé sekvence fragmentu genotypu *S. mochiquense* s nukleotidovou databází NCBI nebyl nalezen žádný genotyp, který by tento inzert obsahoval. Databáze navíc neobsahovala sekvenci žádného genotypu příslušného tomuto druhu. Nelze proto říci, zda je detekovaný inzert unikátní a specifický pro druh *S. mochiquense*.

Sekvenací byla dále detekována substituce C za G v pozici 230 u genotypu *S. bulbocastanum* oproti ostatním analyzovaným genotypům (Obrázek 22). Porovnáním celé sekvence s nukleotidovou databází NCBI se tato substituce jeví jako specifická pouze pro druh *Solanum bulbocastanum*. Z těchto výsledků vyplývá, že je marker Cp3 vhodný pro
detekci dědičnosti cytoplasmy u somatických hybridů *S. bulbocastanum* PIS 66 x DH 165. Případné použití tohoto markeru je však vázáno na určení sekvence nukleotidů, což zvyšuje finanční náročnost analýzy. Detekce variability produktů markeru Cp3 u rodičovských komponent metodami DGGE a CDGE není možná. Substituce C za G by v tomto případě nezměnila mobilitu fragmentů DNA v denaturačních podmínkách (močovina, formamid) akrylamidového gelu.

Většina těchto druhů pochází z oblastí centrální a Jižní Ameriky. Pro druhy *S. lacinatum* a *S. aviculare* je však charakteristická oblast výskytu Austrálie, Nová Guinea, Tasmánie a Nový Zéland. Tyto dva druhy patří sice do rodu *Solanum*, ale jejich základní počet chromozomů n = 23 je v tomto rodu unikátní (Bohs a Olmstead, 1997). Diploidní *S. aviculare* a tetraploidní *S. lacinatum* patří do podrodu *Archaesolanum* v rámci rodu *Solanum*. Tento podrod tvoří izolovanou skupinu, u které nebyla dosud prokázána blízká příbuznost s ostatními druhy v rámci rodu *Solanum* (Poczai et al., 2008). 100 % homologie produktu markeru Cp3 s kulturním bramborem však naznačují platnost domnění autorů Olmstead a Palmer (1997) o společném prapředkovi, který v časných fázích evoluce, pravděpodobně v době existence společného kontinentu Pangea, migroval mimo jiné na australský kontinent, kde se izolovaně vyvíjel a vytvořil podrod *Archaesolanum*.

Jelikož marker Cp3 (trnL/trnL) amplifikuje oblast intronu chloroplastové DNA o velikosti 557 bp (Taberlet et al., 1991) a primery tohoto markeru nasedají v genomu chloroplastové DNA do kódujících vysoce konzervativních oblastí exonů genu kodujícího tRNA pro aminokyselinu leucin, je variabilní pouze oblast intronu mezi kódujícími sekvencemi (exony). To dělá z markeru Cp3 vysoce specifický marker pro chloroplastovou DNA, který je aplikovatelný napříč rostlinnou říší. Srovnáním sekvence s databází NCBI byla
tato skutečnost potvrzena. Porovnáním pouze počáteční a koncové sekvence tohoto fragmentu, tedy exonových oblastí, byla detekována 100 % homologie mezi genotypy druhů z různých čeledí rostlinné říše. Naopak intronová oblast byla výsoce homologní pouze u čeledi Solanaceae.

Obrázek 22: Výsledky sekvenace produktů markeru Cp3

6.4.3.3.4 Marker Cp4

U 418 bp produktu markeru Cp4 (trnL/trnF) byl pomocí denaturační gradientové gelové elektroforézy (DGGE) a konstantní denaturační gelové elektroforézy (CDGE) detekován polymorfismus (Obrázek 17 a 19). Pro přesnou identifikaci polymorfismu byla provedena sekvenace fragmentu u genotypů obsahujících jednotlivé alely A, B nebo C. Jednalo se o dihaploid S. tuberosum ssp. tuberosum DH 165 (A) a DH 322 (A), S. verrucosum 299 (A), S. pinnatisectum 051 (A), S. bulbocastanum PIS 17 (B), S. chacoense (C), S. yungasense (C), S. microdontum 049 (C), S. mochiquense (C) a S. berthaultii 260 (C).

Sekvenováním byla detekována mezidruhová variabilita v podobě bodových mutací (substituce, delece), která nijak nekorespondovala s výsledky CDGE analýzy (Obrázek 23). Z výsledků je patrné, že metoda perpendikulární DGGE (ve vertikálně rostoucím denaturačním gradientu) se zdá být z hlediska predikce variability vhodná, zatímco metoda CDGE, sloužící pro přesnou detekci variability mezi jednotlivými genotypy, v tomto případě jako nedostačující a zavádějící. I přes všechna úskalí je marker Cp4 vhodný pro detekci dědičnosti cytoplasmu u somatických hybridů S. bulbocastanum PIS 66 x DH 165 a S. bulbocastanum PIS 60 x DH 388, což je podrobněji diskutováno v kapitole 6.5.2.2. Případné
použití tohoto markeru je však vázáno z výše uvedených důvodů na určení sekvence nukleotidů.

Jednotlivé sekvence markeru Cp4 byly porovnány s nukleotidovou databází NCBI. Nekódující oblast intergenového mezerníku v této sekvenci je vysoce homologní pouze u čeledi Solanaceae. Byla detekována 100 % homologie mezi genotypy dihaploid S. tuberosum ssp. tuberosum DH 165 a DH 322 a S. verrucosum 299, v databázi NCBI však nebyl nalezen žádný genotyp, který by s nimi vykazoval 100 % homologii. Naopak sekvence analyzovaného genotypu S. berthaultii 260 byla 100 % homologní se čtyřmi dostupnými sekvencemi S. tuberosum ssp. tuberosum HM006842.1, DQ386163.2, FJ490824.1, DQ231562.1 v databázi NCBI.

Tyto výsledky naznačují výskyt vnitrodruhové variability chloroplastové DNA u druhu S. tuberosum ssp. tuberosum. Důvodem je, že se jako východzi šlechtitelský materiál u moderních kulturních odvod často využívají mezidruhové hybridy, které zlepšují významné hospodářské vlastnosti. Odrůda Apta, ze které byl odvozen dihaploid DH 165 a DH 388, byla vyšlechtěna v Německu v roce 1951 jako výsledek křížení mezidruhového hybridu v pozici matky a odrůdy Hindenburg (The European Cultivated Potato Database, VB; EVIGEZ, ČR). Blížší určení původu daného mezidruhového hybridu databáze neuvádí a je pravděpodobné, že odrůda Apta zdědila cytoplazmu po některém genovém zdroji rodu Solanum. Vzhledem k tomu, že dihaploid DH 322 pochází rovněž z Německa a jeho autoři neudávají bližší údaje, je pravděpodobné, že jeho rodokmen bude obdobný jako u DH 165.

Z těchto důvodů může být problematické zařazovat druh S. tuberosum ssp. tuberosum do fylogenetických studií. Pro přesnější podchycení vnitrodruhové variability chloroplastové DNA v rámci druhu S. tuberosum ssp. tuberosum a jeho použitelnosti ve fylogenetických studiích by bylo třeba charakterizovat široké spektrum odvodů kulturního bramboru velkým počtem markerů pro chloroplastovou DNA a případně získané sekvence porovnat s odrůdy rodu Solanum, které v rodokmenu daného odvodu vyskytují.

100 % homologie byla dále detekována u sekvencí genotypů druhů S. chacoense, S. yungasense, S. microdontum 049 a genotypu S. brevicaule DQ180443.1 z NCBI. Druh S. brevicaule se vyskytuje v oblastech Bolívie a vzácně v oblastech SZ Argentiny, což se shoduje s oblastmi výskytu ostatních třech druhů (Correll, 1962). Všechny čtyři druhy jsou diploidní s 2EBN, druhy S. chacoense a S. yungasense patří do série Yungasensa a druhy S. microdontum a S. brevicaule do série nekulturní Tuberosa (Bradshaw a Mackay, 1994). Výše uvedené výsledky naznačují určitou míru příbuznosti mezi těmito čtyřmi druhy, kterou však nelze přesně definovat na základě analýzy jediného markeru.
Porovnáním celé sekvence genotypu S. bulbocastanum PIS 17 s nukleotidovou databází NCBI byla detekována 100 % homologie pouze se sekvencemi genotypů stejného druhu DQ180444.1 a DQ347958.1, a proto se tato sekvence jeví jako specifická pouze pro druh Solanum bulbocastanum.

Porovnáním celé sekvence markeru genotypu S. mochiquense s nukleotidovou databází NCBI nebyl nalezen žádný genotyp se 100 % shodou. Databáze navíc neobsahovala osekvenovaný fragment u žádného genotypu příslušícího tomuto druhu. 100 % homologie v analyzované sekvenci genotypu S. pinnatisectum 051 nebyla detekována dokonce ani u sekvence genotypu stejného druhu DQ180453.1 uvedeného v databázi NCBI, proto lze v tomto případě hovořit o vnitrodruhové variabilitě.

Obrázek 23: Výsledky sekvence produktů markeru Cp4

6.4.3.3.5 Marker Cp7

Marker Cp7 (trnV/16SrRNA) amplifikuje oblast intergenového mezerníku chloroplastové DNA o velikosti 297 bp. Vzhledem k tomu, že se u všech analyzovaných genotypů amplifikoval soubor dvou fragmentů (Obrázek 21), byla pro srovnání provedena
jejich sekvenace u genotypů S. bulbocastanum PIS 17 a S. berthaultii 260. V rámci přímé oboustranné sekvenace se v obou případech podařilo osekvenovat pouze 5’–3’ vlákná fragmentu na základě primeru Cp7 F. Opakovaná sekvenace 3’–5’ vlákná fragmentu na základě primeru Cp7 R nebyla úspěšná. Z tohoto důvodu se nepodařilo získat kompletní sekvenci žádného z fragmentů uvedených genotypů. Části fragmentů, které se podařilo osekvenovat, však mezi sebou vykazovaly 100 % homologii.

Nejdelší osekvenovaný úsek, fragment S. berthaultii 260 o velikosti 247 bp, byl porovnán s nukleotidovou databází NCBI. V rámci této databáze byla detekována 100 % homologie se sekvencemi čtyř genotypů Lycopersicum esculentum AC239738.5, AM087200.3, AY216521.1, DQ347959.1, dvou genotypů S. tuberosum ssp. tuberosum DQ386163.2, DQ231562.1 a S. bulbocastanum DQ347958.1. Dále byla detekována 95–99 % homologie s genotypy 57 druhů nepatřících do čeledi Solanaceae, u kterých byla tato sekvence analyzována. Například 99 % homologii vykazovali zástupci druhů Solanum nigrum Y18934.1, Nicotiana tomentosiformis AB240139.1, Nicotiana sylvestris AB237912.1, Nicotiana tabacum Z00044.2, Nicotiana plumbaginifolia X70938.1, Atropa belladonna AJ316582.1 a Datura dioxia FJ971407.1. Z těchto výsledků vyplývá, že je tento intergenový mezerník nachází u širokého spektra růstlin s poměrně nízkou variabilitou a lze tudíž do jisté míry hovořit o jeho konzervovanosti napříč rostlinnou říší.

Vzhledem k tomu, že sekvence genotypu *Nicotiana tabacum* Z00044.2 uložená v databázi NCBI vykazovala 99 % homologii s analyzovaným genotypem *S. berthaultii* 260, bylo by možné předpokládat obdobné velikostní rozdíly mezi oběma získanými fragmenty uloženými v inventovaných repeticích IRa a IRb. Separace fragmentů v 1,5 % agarózovém gelu však tento velikostní rozdíl nepotvrdila. Pro detekci variability těchto sekvencí proto bude nutné provést sekvenaci fragmentu klonovaného do plazmidu a sestavit tak kompletní sekvenci.

6.5 Detekce somatických hybridů

6.5.1 Morfologické a cytologické metody detekce somatických hybridů

6.5.1.1 Morfologické hodnocení

Většina rostlin potenciálně vzniklých somatickou hybridizací vykazovala ve skleníku (Obrázek 24) a v polním pokusu (Obrázek 25) viditelně intenzivnější růst, vývoj a vzrůst než původní rodičovské genotypy a mnoho morfologických znaků intermedialního charakteru, což se shoduje s výsledky Waara et al. (1992) a Helgelson et al. (1998). Příkladem jsou zejména listy, kdy hybridní rostliny obsahují pouze 2 jařma párových listků a jeden koncový listek, zatímco *S. bulbocastanum* má listy jednoduché vejčité a *S. tuberosum* DH165 list složený obvykle z 5 párrů jařmových listků (Obrázek 26).

Důležitou vlastností je také schopnost většiny získaných regenerantů tvořit květy. Tvar, uspořádání a barva květní koruny jsou znaky oligogenního charakteru, kde mají navíc některé geny pleiotropní účinek na zbarvení stonků, řapíků listů, slupky a dužniny hlíz apod. (Hraška et al., 1989; Bradshaw a Mackay, 1994). Z těchto důvodů je velmi obtížné přesně definovat genové pozadí vybraných znaků u somatických hybridů a jejich rodičovských komponent. Z hlediska tvaru a uspořádání květní koruny a jejího zbarvení se u somatických hybridů prokázala přítomnost a spolupůsobení všech genů od obou rodičovských komponent, které se na projevu daných znaků podílely. Uspořádání květní koruny je u somatických hybridů totožné s druhem *Solanum tuberosum* ssp. *tuberosum*, které se typem květní koruny řadí do skupiny odvozená *Rotata* (Hawkes, 1990) a lze tudíž předpokládat, že se jedná o dominantní projev znaku. Tvar a velikost smetanově zbarvené vnitřní částí koruny somatických hybridů, takzvané hvězdy, jsou však zcela identické s květem druhu *S. bulbocastanum* a lze předpokládat, že dominantní alely genů zodpovídajících za tento znak získaly somatické hybridy od druhu *S. bulbocastanum* (Obrázek 27).
Genotypy REG 24 F a 52 F vykazovaly z morfologického hlediska znaky shodné pouze s dihaploidy *S. tuberosum* ssp. *tuberosum* DH 165 a 322, kde REG 24 F vykazoval nižší vitalitu, naopak REG 52 F intenzivnější růst a produkci nadzemní biomasy oproti původním rodičovským dihaploidním genotypům.

Genotypy REG 1, 5, 9, 11 a 14 vzniklé regenerací pouze z protoplastů genotypů druhu *S. bulbocastanum*, tedy bez fúze, vykazovaly intentivnější růst a větší podíl biomasy oproti původnímu diploidnímu genotypu, ze kterého byly odvozeny. Naopak rostliny genotypu REG 2, vzniklého stejným způsobem, vykazovaly nižší vitalitu než původní druh. Z výsledků lze usuzovat, že mají tyto genotypy pravděpodobně odlišný stupeň ploidie. Pro přesné stanovení stupně ploidie byly uvedené genotypy dále analyzovány metodou průtokové cytometrie.

Charakterizace 25 parametrů u rostlin v polním pokusu pomocí klasifikátoru pro rod *Solanum* (Vidner et al., 1987) včetně vysvětlivek klasifikátoru je uvedena v příloze 14. V rámci hodnocení pomocí klasifikátoru byly charakterizovány pouze genotypy druhu *Solanum bulbocastanum*, genotypy vzniklé regenerací protoplastů pouze tohoto druhu a potenciální somatické hybridy. Žádnou rostlinu rodičovského dihaploidního genotypu *S. tuberosum* ssp. *tuberosum* DH 165, ani DH 387, ani odrůdu Apta se nepodařilo v polních podmínkách dopěstovat z důvodů nižší vitality dihaploidů a obecně vysoké náchylnosti genotypů k *Phytophthora infestans*.

Obrázek 24: Morfologické srovnání genotypů ve skleníkovém pokusu, dihaploid *S. tuberosum* ssp. *tuberosum* 165 (vlevo), *S. bulbocastanum* PIS 66 (vpravo) a jejich somatický hybrid (uprostřed)
Obrázek 25: Morfologické srovnání genotypů v polním pokusu, a) a b) *S. bulbocastanum* PIS 17 (2n) a REG 5 (4n); c) dihaploid *S. tuberosum* ssp. *tuberosum* 165 (2n); d), e) a f) somatické hybridy REG 30 F, REG 34 F a REG 43 F (všechny 4n)
Obrázek 26: Morfologické srovnání listů

Solanum bulbocastanum Dun.
Solanum tuberosum ssp. tuberosum L.
Somatický hybrid S. blb x S. tub
Obrázek 27: Morfologické srovnání květů, a), b) somatický hybrid REG 43 F; c), d) *Solanum bulbocastanum* PIS 61; e), f) dihaploid *S. tuberosum* ssp. *tuberosum* 165
6.5.1.2 Detekce stupně ploidie

6.5.1.2.1 Průtoková cytometrie

Výsledky stanovení stupně ploidie metodou průtokové cytometrie byly získány ve spolupráci s ÚEB AV v Olomouci a Botanickým ústavem AV ČR, v.v.i. v Průhonicích a jsou uvedeny v tabulce 17. Cytometrická vyšetření rostlin morfologicky přechodného typu ukazují na zvýšený počet chromozómů oproti původním diploidním jedincům použitým k fúzím protoplastů (Obrázek 28 a 29). Metoda odhalila u některých potenciálních somatických hybridů více jak 1,5 násobek obsahu jaderné hmoty (zřejmě se jedná o aneuploidy), většina hybridů však vykazovala přibližně dvojnásobný obsah oproti původním diploidům.

Genotyp REG 24 F byl identifikován jako autohexaploid a REG 52 F jako autotetraploid s genomem druhu Solanum tuberosum ssp. tuberosum.

U genotypů REG 1, 5, 9, 11 a 14 byl touto metodou prokázán tetraploidní a u genotypu REG 2 hexaploidní stav. Vzhledem k tomu, že se jedná o genotypy vzniklé regenerací pouze z protoplastů genotypů diploidního druhu S. bulbocastanum, zvýšení stupně ploidie mohlo nastat buď samovolnou fúzí buněk během izolace protoplastů nebo spontánní polyploidizací buněk v rané fázi regenerace protoplastových kultur v novou rostlinu.

Tetraploidní genotyp REG 1 a hexaploidní genotyp REG 2 pocházejí ze dvou prýtů jednoho kalusu označeného číslem 1 (Tabulka 8). Odlišný stupeň ploidie téhoto genotypů mohl být způsoben spontánní polyploidizací buňky nebo buněk, které daly vzniknout danému prýtu. Druhou možností je srůst dvou kalusů během kultivace. Tetraploidní somatický hybrid REG 35 F a tetraploidní genotyp REG 52 F, který obsahuje genotypy pouze druhu Solanum tuberosum ssp. tuberosum, pocházejí rovněž z odlišných prýtů jednoho kalusu označeného číslem 12 (Tabulka 8). V tomto případě došlo pravděpodobně ke srůstu dvou kalusů během kultivace.

Shrnutí výsledků morfologického hodnocení a analýzy genotypů metodou průtokové cytometrie naznačuje, že nejvyšší produkci nadzemní biomasy vykazují tetraploidní genotypy u obou druhů Solanum bulbocastanum (REG 1, 5, 9, 11 a 14) a S. tuberosum ssp. tuberosum (REG 52 F). Zvýšením stupně ploidie na hexaploidní úroveň (REG 2, REG 24 F) došlo u genotypů obou druhů ke zhoršení vitality, a též ke snížení produkce biomasy výrazně pod úroveň diploidních genotypů téhoto druhu. Tyto výsledky pravděpodobně naznačují jeden z možných aspektů ukotvení tetraploidního stavu v rámci vzniku a domestikace kulturních brambor S. tuberosum ssp. tuberosum.
Tabulka 17: Výsledky stanovení stupně ploidie metodou průtokové cytometrie

<table>
<thead>
<tr>
<th>Botanický ústav AV ČR, v.v.i., Průhonice</th>
<th>ÚEB AV, Olomouc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotyp</td>
<td>Index</td>
</tr>
<tr>
<td>S. blb PIS 61</td>
<td>0,4640</td>
</tr>
<tr>
<td>DH 388</td>
<td>0,5350</td>
</tr>
<tr>
<td>REG 1</td>
<td>0,9320</td>
</tr>
<tr>
<td>REG 2</td>
<td>1,4480</td>
</tr>
<tr>
<td>REG 5</td>
<td>0,9390</td>
</tr>
<tr>
<td>REG 9</td>
<td>0,9340</td>
</tr>
<tr>
<td>REG 11</td>
<td>0,9320</td>
</tr>
<tr>
<td>REG 20 F</td>
<td>1,0000</td>
</tr>
<tr>
<td>REG 24 F</td>
<td>1,5570</td>
</tr>
<tr>
<td>REG 27 F</td>
<td>1,0000</td>
</tr>
<tr>
<td>REG 28 F</td>
<td>1,0000</td>
</tr>
<tr>
<td>REG 33 F</td>
<td>1,0000</td>
</tr>
<tr>
<td>REG 34 F</td>
<td>1,0000</td>
</tr>
<tr>
<td>REG 37</td>
<td>0,4800</td>
</tr>
<tr>
<td>REG 38 F</td>
<td>1,0000</td>
</tr>
<tr>
<td>REG 39 F</td>
<td>1,0000</td>
</tr>
<tr>
<td>REG 40 F</td>
<td>1,0000</td>
</tr>
<tr>
<td>REG 41 F</td>
<td>1,0000</td>
</tr>
<tr>
<td>REG 42 F</td>
<td>1,0000</td>
</tr>
<tr>
<td>REG 43 F</td>
<td>1,0000</td>
</tr>
<tr>
<td>REG 47 F</td>
<td>1,0000</td>
</tr>
<tr>
<td>REG 48 F</td>
<td>1,0000</td>
</tr>
<tr>
<td>REG 51 F</td>
<td>1,0000</td>
</tr>
<tr>
<td>REG 55</td>
<td>0,4740</td>
</tr>
<tr>
<td>REG 67 F</td>
<td>1,0000</td>
</tr>
<tr>
<td>REG 68 F</td>
<td>1,0000</td>
</tr>
<tr>
<td>REG 69 F</td>
<td>1,0000</td>
</tr>
<tr>
<td>REG 70 F</td>
<td>1,0000</td>
</tr>
<tr>
<td>REG 71 F</td>
<td>1,0000</td>
</tr>
</tbody>
</table>

* S. bulbocastanum
* S. tuberosum ssp. tuberosum
* Somatický hybrid
Obrázek 28: Výstup cytologického vyšetření genotypu *Solanum bulbocastanum* PIS 61 (2n) získaný z průtokového cytometru Partec PAS (Německo). Dva píky představují obsah DNA v jádech v G1 a G2 fázi buněčného cyklu
Obrázek 29: Výstup cytologického vyšetření genotypu somatického hybrida REG 50 F (4n) získaný z průtokového cytometru Partec PAS (Německo). Dva píky představují obsah DNA v jádrech v G1 a G2 fázi buněčného cyklu

6.5.1.2.2 Analýza variability uzavíracích párových buněk průduchů

Hodnocení vlastností průduchů se oproti metodě průtokové cytometrie (Tabulka 17) ukázalo být jednoduchou a hlavně minimálně nákladnou metodou použitelnou jako důkaz změny stavu karyotypu. Z naměřených dat (Přílohy 15, 16, 17 a 18) bylo zjištěno, že původní diploidy s hodnotou karyotypu 2n = 2x = 24 vykazovaly průměrnou délku průduchových buněk 24,01 µm (s = 3,4 µm), kdežto tetraploidy (2n = 4x = 48) vykazovaly délku 34,29 µm (s = 3,87 µm). Obdobná situace nastala i v případě počtu chloroplastů ve svěracích buňkách průduchů, kdy diploidy obsahovaly v průměru 13,1 chloroplastů (s = 1,87 ks) zatímco tetraploidy průměrně 21,9 chloroplastů (s = 3,37 ks). Výsledky jsou dokumentovány na obrázku 30. Číselné hodnoty o počtu chloroplastů odpovídají informacím podle Zadina a Jermoljev (1976). Analýza rozptylu prokázala, že rozdíly mezi diploidy a tetraploidy jsou statisticky velmi významné (p << 0,01). Výsledky dokumentuje graf na obrázku 31.
Z metodického hlediska je důležité zjištění, že stomata jsou z hlediska délky a obsahu chloroplastů nejméně variabilní ve třetím listovém patře.

Obrázek 30: Výstup analýzy rozptylu dvojného třídění dokumentující rozdíly mezi měřenými hodnotami stomatárních buněk rostlin s různým počtem chromozomů

![Výstup analýzy rozptylu dvojného třídění](image)

6.5.2 Molekulárně genetické metody detekce somatických hybridů

Jako důkaz hybridnosti genotypu byly využity dvě nezávislé metody molekulární analýzy DNA, které měly doložit jak hybridnost v oblasti jaderné DNA tak i DNA cytoplazmatické.

6.5.2.1 RAPD analýza

Z hlediska molekulární analýzy DNA potenciálních somatických hybridů a jejich rodičovských komponent, bylo pomocí RAPD profilů dekamerických primerů OPN 8, 11, 13, 14, 15, 20, OPH 20 a OPF 5 prokázáno, že se jedná o somatické hybridy v případě 27 z 29 genotypů (Obrázek 32). U genotypu REG 52 F, který pocházel z kombinace S. blb 66 x DH 165, bylo RAPD analýzou zjištěno, že k fúzi nedošlo a tento regenerant je z hlediska RAPD produktů totožný s DH 165. Stejný výsledek vykazoval genotyp REG 24 F pocházející z kombinace S. veru 299 x DH 322. Tento regenerant byl rovněž genotypově totožný s DH 322. Zde je možné dodat, že ačkoliv je aplikace metody RAPD často zpochybňována (Jones et al., 1997), experimenty prokázaly, že je pro účely detekce somatických hybridů plně vyhovující. Jednak je velmi rychlá a nedestruktivní, v zásadě však i relativně levná a pro účely detekce somatických hybridů dostatečně opakovatelná a citlivá. K podobným závěrům

Obrázek 32: RAPD analýza PCR produktů primeru OPN 11 u somatických hybridů a jejich rodičovských komponent

S. blb – Solanum bulbocastanum, DH – dihaploid S. tuberosum ssp. tuberosum, REG – jedinec vzniklý somatickou hybridizací S. blb 66 a DH 165

6.5.2.2 Analýza chloroplastového markeru Cp4

Sekvenační analýzou produktu markeru trnL/trnF u rodičovských komponent S. blb 66 a DH 165 a jejich sedmi potenciálních somatických hybridů bylo prokázáno, že zdědily tuto část chloroplastové DNA pouze po jednom rodiči. Genotypy REG 24 F, 30 F, 34 F, 35 F, 39 F a 52 F ji zdědily po dihaploidu kulturního bramboru Solanum tuberosum ssp. tuberosum DH 165 a genotyp REG 20 F po S. bulbocastanum PIS 66 (Obrázek 33). Zvláštností chloroplastové DNA je to, že v ní pravděpodobně nedochází k rekombinaci. To má za následek, že jsou všechny její geny (cistrony) selektovány najednou, jako jedna evoluční jednotka, jeden gen (Flegr, 2005). Pokud somatické hybridy zdědily analyzovanou část chloroplastové DNA pouze po jednom z rodičů, lze předpokládat, že se to bude týkat celého chloroplastového genomu. Tyto výsledky se shodují s Kemble et al. (1986). Pokud by došlo k fúzi cytoplazmy obou komponent, měly by vzniklé genotypy standardně obsahovat oba typy chloroplastové DNA v rámci analyzovaného lokusu. Tento výsledek by na první pohled bylo možno interpretovat dvěma způsoby, buď k fúzi cytoplazmy vůbec nedošlo, nebo byly chloroplasty jedné rodičovské komponenty v průběhu regenerace protoplastů v cytoplazmě eliminovány. Výsledky metody RAPD a průtokové cytometrie prokazují, že u těchto...
somaticích hybridů došlo k fúzi pravděpodobně celých jader. Proto je nepravděpodobné, že by společně s jádry obou rodičovských komponent nefúzovala alespoň malá část cytoplazmy. Tuto možnost prakticky vylučují i přímá pozorování průběhu fúze, kdy dochází ke slévání obsahu celých buněk. Proto se lze přiklánět spíše k předpokladu, že v průběhu vývoje hybridního kalusu došlo k eliminaci proplastidů pocházejících z dané rodičovské komponenty.

Obrázek 33: Výsledky sekvenace produktů markeru Cp4 pro detekci dědičnosti cytoplasy u somatických hybridů

6.6 Charakteristika vybraných vlastností somatických hybridů z hlediska využitelnosti ve šlechtění bramboru

6.6.1 Fenotypové zhodnocení odolnosti somatických hybridů k Phytophthora infestans

Ze šlechtitelského hlediska velmi důležité hodnocení somatických hybridů týkající se odolnosti k Phytophthora infestans přineslo do jisté míry pozitivní výsledky, jelikož jak v laboratorním tak polním pokusu rostliny vykázaly poměrně značnou míru odolnosti. Zatímco dvouleté polní pokusy v oblasti Prahy informují o vysoké polní odolnosti, kdy prakticky po celou dobou vegetace nebyly zaznamenány symptomy choroby na listech ani stoncích, v laboratorním pokusu většina somatických hybridů vykazuje odolnost střední až vysokou. Pozitivní je zejména fakt, že pokud dojde k rozvoji nekróz na listu, patogen je schopen sporulace pouze při extrémní vlhkosti prostředí. Navíc, sporangiofory vytváří pouze
sporadicky a jen v oblasti nekróz a nikoliv v oblasti pletiva nekrózy ohraničujícího, jako je tomu u listů rostlin extrémně náchylných, kam patří i použité dihaploidy *S. tuberosum* DH 165 a DH 388. Ačkoliv tedy projev odolnosti nebyl tak silný jako v případě *S. bulbocastanum* PIS 66, je evidentní, že genetické interakce v hybridním genotypu udržely odolnost na relativně vysoké úrovni, která sice nevede k úplnému potlačení patogena, ale významně omezuje jeho šíření v rostlině i v porostu.

V případě genotypů REG 24 F a REG 52 F byla infekčním testem metodou listových terčíků detekována 100 % náchylnost k *Phytophthora infestans*, což potvrzuje výsledky předchozích analýz a oba tyto genotypy obsahují genom pouze druhu *S. tuberosum* ssp. *tuberosum*.

6.6.2 Tvorba hlíz a výnosový potenciál

Všechny genotypy zařazené do polního pokusu tvořily hlízy (Obrázek 35). Genotyp DH 165 vznikl dihaploidizací odrůdy Apta, kterou Genová banka při výzkumném ústavu bramborářském v Havlíčkově Brodě deklaruje jako odrůdu polopozdní. Druh *S. bulbocastanum* pochází z Mexika a jedná se o rostlinu krátkodení a v našich podmínkách by tvořila hlízy na podzim (Correll, 1962). Z těchto údajů lze předpokládat, že hodnocené somatické hybridy se budou řadit mezi genotypy s dlouhou vegetační dobou, což se v polním pokusu potvrdilo.

Z hlediska stanovení počtu a hmotnosti hlíz pod trsem a orientačního výnosu v t.ha−1 jsou hodnocené genotypy variabilní (Tabulka 18, Obrázek 36). Hodnoty uvedené v tabulce 18 za rok 2010 jsou průměry ze dvou opakování. Diploidní rodičovské genotypy druhů *S. bulbocastanum* a *S. tuberosum* ssp. *tuberosum* mají přibližně shodný počet hlíz pod trsem o shodné hmotnosti. Tetraploidní genotypy druhu *S. bulbocastanum* (REG 5 a REG 9) mají
obdobný počet hlíz pod trsem, ale jejich hmotnost je 2 – 5 x vyšší než u diploidního genotypu (S. blb 17). Tyto výsledky potvrzují, že i v rámci nekulturního druhu S. bulbocastanum tetraploidní stav může vést ke zvýšení výnosového potenciálu. Nízký počet nasazených hlíz pod trsem u genotypů tohoto druhu může být způsoben jeho krátkodenností. Rostliny začaly nasazovat hlízy až v době sklizně.

Somatické hybridy vykazovaly v průměru větší počet hlíz pod trsem a mnohonásobně vyšší výnosy než původní rodičovské komponenty, což se shoduje s výsledky Waara et al. (1992) a Mattheij a Puite (1992). Nejlepších výsledků dosáhly genotypy REG 34 F, 43 F a 44 F. Ve srovnání s tetraploidy REG 5 a REG 9 (S. bulbocastanum) má většina somatických hybridů větší počet a hmotnost hlíz pod trsem. To naznačuje posun vegetační doby hybridů ve směru k polopozdní odrůdě Apta, ze které byl odvozen rodič DH 165.

Souhrnné statistické hodnocení výnosotvorných parametrů u genotypů zařazených do polních pokusů v obou letech nebylo možné z důvodu odlišného způsobu výsadby. V případě použití rostlin jako sadbového materiálu byly teoretické výnosy somatických hybridů odhadnuty v rozmezí 0,298 (REG 40 F) – 11,774 (REG 43 F) t.ha⁻¹. Použitím hlíz jako sadbového materiálu se zvýšil počet stonků a stolonů na jedné rostlině somatických hybridů, což vedlo k navýšení teoretického výnosu na průměnných 30,76 t.ha⁻¹ (Tabulka 18). Tyto teoretické výnosy se přibližují k výnosům současných konvenčně pěstovaných odrůd bramboru (Čermák, 2010). Pro přesnější určení těchto charakteristik je však třeba provést víceleté polní pokusy o větším plošném rozsahu.

U hlíz všech genotypů z polního a skleníkového pokusu bylo hodnoceno celkem 9 parametrů podle klasifikátoru pro rod Solanum (Vidner et al., 1987) (Příloha 19). Některé parametry jako je velikost hlíz, vyrovnanost v tvaru apod. nebylo možné hodnotit z důvodu sklizně omezeného počtu hlíz. Genotypy REG 2, 20 F, 24 F, 55 a 71 F nemohly být z tohoto důvodu charakterizovány vůbec.

Všechny diploidní a tetraploidní genotypy druhu Solanum bulbocastanum měly kulaté hlízy s bezbarvou slabkou a bílou barvou dužniny, což se shoduje s botanickým popisem tohoto druhu (Correll, 1962; Bradshaw a Mackay, 1994). Dihaploid S. tuberosum ssp. tuberosum DH 165 se ve většině parametrů shodoval s odrůdou Apta, ze které byl odvozen. Vyjímkou byl vzhled hlíz, kde hlízy genotypu DH 165 vykazovaly vysoké procento deformací. Silné deformace se objevily u tohoto genotypu DH 165. Výsledky se objevily i u genotypu DH 387. Tetraploidní REG 52 F, který dle předchozích výsledků obsahuje pouze genom S. tuberosum ssp. tuberosum (DH 165), byl ve všech parametrech srovnatelný s odrůdou Apta. Z těchto výsledků je patrné, že
dihaploidizace kulturního bramboru může pravděpodobně způsobovat zhoršení některých kvalitativních parametrů hlíz.

Z hlediska tvorby a výnosového potenciálu hlíz se somatické hybridy zdají být vhodným výchozím šlechtitelským materiálem, ze kterého by zpětným nasycovacím křížením s tetraploidním bramborem mohly vzniknout nové odrůdy.
Obrázek 34: Jednoletý polní pokus na pokusném poli České zemědělské univerzity v lokalitě Praha 6 – Suchdol
Obrázek 35: Morfologické srovnání hlíz

Obrázek 3: Morfologické srovnání hlíz

S. blb 61 (2n)

REG 32 F (4n)

REG 5 (4n)

REG 35 F (4n)

S. tub DH 165 (2n)

REG 38 F (4n)

REG 43 F (4n)

REG 44 F (4n)
Tabulka 18: Orientační hodnocení výnosového potenciálu hlíz somatických hybridů v polních pokusech v letech 2009 a 2010

<table>
<thead>
<tr>
<th>Genotyp</th>
<th>Počet hlíz pod trsem</th>
<th>Hmotnost hlíz pod trsem [g]</th>
<th>Teoretický výnos [t.ha⁻¹]</th>
<th>Počet hlíz pod trsem</th>
<th>Hmotnost hlíz pod trsem [g]</th>
<th>Teoretický výnos [t.ha⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. blb 17</td>
<td>3</td>
<td>13,2</td>
<td>0,581</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DH 165</td>
<td>3,5</td>
<td>11,25</td>
<td>0,495</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DH 387</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13,0</td>
<td>537,4</td>
<td>23,65</td>
</tr>
<tr>
<td>Apta</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>20,0</td>
<td>1218,0</td>
<td>53,68</td>
</tr>
<tr>
<td>REG 5</td>
<td>2,6</td>
<td>48,38</td>
<td>2,129</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>REG 9</td>
<td>3</td>
<td>21,6</td>
<td>0,950</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>REG 36</td>
<td>1,8</td>
<td>2,34</td>
<td>0,103</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>REG 28 F</td>
<td>3,8</td>
<td>100,84</td>
<td>4,437</td>
<td>18,2</td>
<td>955,0</td>
<td>42,02</td>
</tr>
<tr>
<td>REG 29 F</td>
<td>5</td>
<td>91,24</td>
<td>4,015</td>
<td>4,2</td>
<td>190,0</td>
<td>8,36</td>
</tr>
<tr>
<td>REG 30 F</td>
<td>3,25</td>
<td>113,4</td>
<td>4,99</td>
<td>11</td>
<td>310,0</td>
<td>13,64</td>
</tr>
<tr>
<td>REG 31 F</td>
<td>4,25</td>
<td>32,525</td>
<td>1,431</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>REG 32 F</td>
<td>3,75</td>
<td>69,925</td>
<td>3,077</td>
<td>13,9</td>
<td>520,0</td>
<td>22,88</td>
</tr>
<tr>
<td>REG 34 F</td>
<td>12,8</td>
<td>232,66</td>
<td>10,237</td>
<td>15,0</td>
<td>1215,0</td>
<td>53,46</td>
</tr>
<tr>
<td>REG 35 F</td>
<td>3,5</td>
<td>51,45</td>
<td>2,264</td>
<td>16,6</td>
<td>350,0</td>
<td>15,40</td>
</tr>
<tr>
<td>REG 38 F</td>
<td>6,6</td>
<td>158,56</td>
<td>6,977</td>
<td>11,1</td>
<td>460,0</td>
<td>20,24</td>
</tr>
<tr>
<td>REG 40 F</td>
<td>1,4</td>
<td>6,78</td>
<td>0,298</td>
<td>10,0</td>
<td>470,0</td>
<td>20,68</td>
</tr>
<tr>
<td>REG 43 F</td>
<td>13,8</td>
<td>267,6</td>
<td>11,774</td>
<td>12,5</td>
<td>995,0</td>
<td>43,78</td>
</tr>
<tr>
<td>REG 44 F</td>
<td>11,8</td>
<td>232,88</td>
<td>10,247</td>
<td>12,3</td>
<td>1150,0</td>
<td>50,60</td>
</tr>
<tr>
<td>REG 46 F</td>
<td>9,3</td>
<td>125</td>
<td>5,5</td>
<td>13,7</td>
<td>1335,0</td>
<td>58,74</td>
</tr>
<tr>
<td>REG 47 F</td>
<td>3</td>
<td>7,15</td>
<td>0,315</td>
<td>6,6</td>
<td>440,0</td>
<td>19,36</td>
</tr>
<tr>
<td>REG 48 F</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7,8</td>
<td>210,0</td>
<td>9,24</td>
</tr>
<tr>
<td>REG 67 F</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10,8</td>
<td>260,0</td>
<td>11,44</td>
</tr>
<tr>
<td>REG 69 F</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6,6</td>
<td>70,0</td>
<td>3,08</td>
</tr>
<tr>
<td>REG 72 F</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1,4</td>
<td>50,0</td>
<td>2,2</td>
</tr>
</tbody>
</table>

Obrázek 36: Sklízeň hlíz v polním pokusu dne 20.10.2009; a) dihaploid \textit{S. tuberosum} ssp. \textit{tuberosum} DH 165; b) somatický hybrid REG 43 F; c) \textit{Solanum bulbocastanum} PIS 61

6.6.3 Předpoklady pro sexuální křížení

V případě reciprokého křížení se v žádném z pokusů nepodařilo dosáhnout oplození a tím tvorby bobulí a semen. Zralá poupata somatických hybridů opylená pylem kulturních odrůd bramboru i poupata odrůd bramboru opylená pylem somatických hybridů přibližně po 24 h extrémně rozkveta a květy do 72 h opadaly. Tyto výsledky naznačují možnou sexuální inkompatibilitu mezi somatickými hybridy a kulturním bramborem \textit{Solanum tuberosum} ssp. \textit{tuberosum}.

V rámci sexuální nekřížitelnosti těchto genotypů by se mohly uplatňovat některé prezygotické a postzygotické bariéry (Orczyk et al., 2003). Pre-zygotická bariéra je založena na mechanismu tzv. pylovo – pestíkové inkompatibility (Grun a Aubertin, 1966). Tuto bariéru lze v některých případech alternativními postupy při křížení překonat. V případě postzygotické bariéry hraje jednu z nejdůležitějších rolí endosperm. Pro tvorbu fertilních semen je třeba, aby byl poměr mateřské a otcovské komponenty při oplození 2 : 1, přičemž sexuální hybridizace probíhá bez větších problémů u genotypů se stejným EBN (Johnston et al., 1980).

V případě somatických hybridů získaných v rámci této disertační práce měly původní rodičovské komponenty odlišné EBN, genotyp \textit{Solanum bulbocastanum} 1EBN a dihaploid \textit{S. tuberosum} ssp. \textit{tuberosum} 2EBN. Otázkou zůstává jaké EBN mají vzniklé somatické hibridy. Jednou možností je, že při somatické hybridizaci došlo v této charakteristice k převládnutí pouze jednoho rodičovského genomu, vzniklé genotypy by potom měly 1EBN nebo pravděpodobněji 2EBN. Při úspěšné somatické hybridizaci však dochází k promíchání celých
obsahu buněk, mohlo by tedy dojít i k navýšení EBN. 3EBN se v rámci rodu *Solanum* nevyskytuje (Hawkes, 1994). 4EBN je typické pro řadu tetraploidních druhů v rámci rodu *Solanum* a vzniklé genotypy se 4EBN bylo možné křížit s kulturním bramborem.

Pro ověření role endospermu by bylo nutné křížit hodnocené somatické hybridy s genotypy druhů rodu *Solanum* s odlišným EBN, například tetraploidní *S. bulbocastanum* (2EBN) - REG 1, 5, 9, 11 a 14, tetraploidní *S. polytrichon* (2EBN), tetraploidní *S. sucrense* (4EBN), tetraploidní *S. tuberosum* ssp. *tuberosum* (4EBN), popřípadě diploidní *S. bulbocastanum* (1EBN), diploidní *S. verrucosum* (2EBN) apod.

Dalším potenciálním důvodem možného neúspěchu při opylení a oplození při reciprokém křížení, je porucha tvorby gamet, vajíček a pylových zrn, hodnocených somatických hybridů. Pro ověření této hypotézy bylo provedeno hodnocení viabilitu pylových zrn.

6.6.3.1 Viabilita pylových zrn

Viabilita pylových zrn stanovená barvením Lugolovým roztokem se u somatických hybridů pohybovala v rozmezí od 0,58 % do 8,97 % (Tabulka 19, Obrázek 37). Statistickým hodnocením metodou analýzy rozptylu jednoduchého třídění byly tyto rozdíly statisticky neprůkazné. Vyjímkou tvořil genotyp REG 47 F s viabilitou 19,647 %. Srovnávací odrůda Valfí a tetraploidní genotyp druhu *S. bulbocastanum* REG 5 vykazovaly viabilitu vyšší než 74 % a tudíž statisticky průkazně odlišnou od somatických hybridů (p << 0,01) (Tabulka 20, Obrázek 37). Pyl odrůdy Valfí umožňuje úspěšné opylení a oplození s následnou tvorbou vitálního potomstva, z tohoto důvodu je viabilita 75 % plně dostačující při sexuálním křížení. Nízká viabilita pylových zrn somatických hybridů pravděpodobně naznačuje i nízkou viabilitu vajíček, což by mohl být hlavní limitující faktor úspěšnosti sexuálního křížení.

Teplota uskladnění sušeného pylu nemá vliv na jeho životaschopnost. Z hlediska teploty při uskladnění pylu nebyl u genotypu REG 43 F nalezen statisticky průkazný rozdíl mezi teplotami skladování 20°C a 4°C.
Tabulka 19: Viabilita pylových zrn stanovená barvením Lugolovým roztokem

<table>
<thead>
<tr>
<th>Genotyp</th>
<th>Teplota uskladnění sušeného pylu [°C]</th>
<th>Viabilita [%]</th>
<th>Genotyp</th>
<th>Teplota uskladnění sušeného pylu [°C]</th>
<th>Viabilita [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valfi</td>
<td>4</td>
<td>74,55</td>
<td>REG 35 F</td>
<td>20</td>
<td>7,50</td>
</tr>
<tr>
<td>REG 5</td>
<td>20</td>
<td>78,44</td>
<td>REG 38 F</td>
<td>20</td>
<td>4,98</td>
</tr>
<tr>
<td>REG 28 F</td>
<td>20</td>
<td>2,03</td>
<td>REG 43 F</td>
<td>4</td>
<td>8,97</td>
</tr>
<tr>
<td>REG 29 F</td>
<td>20</td>
<td>0,58</td>
<td>REG 43 F</td>
<td>20</td>
<td>8,56</td>
</tr>
<tr>
<td>REG 30 F</td>
<td>20</td>
<td>5,77</td>
<td>REG 44 F</td>
<td>20</td>
<td>1,72</td>
</tr>
<tr>
<td>REG 32 F</td>
<td>20</td>
<td>0,94</td>
<td>REG 46 F</td>
<td>20</td>
<td>9,17</td>
</tr>
<tr>
<td>REG 34 F</td>
<td>20</td>
<td>6,10</td>
<td>REG 47 F</td>
<td>20</td>
<td>19,65</td>
</tr>
</tbody>
</table>

REG – jedinec vzniklý regenerací protoplastových kultur, F – genotypy, u kterých proběhla fúze protoplastů.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Valfi</td>
<td>0,000135</td>
<td>0,000135</td>
<td>0,968290</td>
<td>0,000135</td>
</tr>
<tr>
<td>2</td>
<td>REG 34 F</td>
<td>0,000135</td>
<td>0,988082</td>
<td>0,000135</td>
<td>0,985297</td>
<td>0,875079</td>
<td>1,000000</td>
<td>0,917380</td>
<td>1,000000</td>
<td>1,000000</td>
<td>0,982468</td>
<td>0,973774</td>
<td>0,007330</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>REG 46 F</td>
<td>0,000135</td>
<td>0,577669</td>
<td>0,298995</td>
<td>0,996900</td>
<td>0,360743</td>
<td>0,999998</td>
<td>0,981130</td>
<td>1,000000</td>
<td>0,512922</td>
<td>0,090550</td>
<td>0,090550</td>
<td>0,090550</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>REG 5</td>
<td>0,000135</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>REG 28 F</td>
<td>0,000135</td>
<td>0,985297</td>
<td>0,577669</td>
<td>0,000135</td>
<td>0,000135</td>
<td>0,000135</td>
<td>0,000135</td>
<td>0,000135</td>
<td>0,000135</td>
<td>0,000135</td>
<td>0,000135</td>
<td>0,000135</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>REG 29 F</td>
<td>0,000135</td>
<td>0,875079</td>
<td>0,298995</td>
<td>0,000135</td>
<td>1,000000</td>
<td>0,625347</td>
<td>0,973292</td>
<td>0,358938</td>
<td>1,000000</td>
<td>0,000135</td>
<td>0,000135</td>
<td>0,000135</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>REG 30 F</td>
<td>0,000135</td>
<td>1,000000</td>
<td>0,996900</td>
<td>0,000135</td>
<td>0,992750</td>
<td>0,914216</td>
<td>0,946804</td>
<td>0,999997</td>
<td>1,000000</td>
<td>0,988899</td>
<td>0,985859</td>
<td>0,005453</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>REG 32 F</td>
<td>0,000135</td>
<td>0,917380</td>
<td>0,360743</td>
<td>0,000135</td>
<td>1,000000</td>
<td>1,000000</td>
<td>0,946804</td>
<td>0,986418</td>
<td>0,426679</td>
<td>1,000000</td>
<td>0,000171</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>REG 35 F</td>
<td>0,000135</td>
<td>1,000000</td>
<td>0,999998</td>
<td>0,000135</td>
<td>0,881104</td>
<td>0,625347</td>
<td>0,999997</td>
<td>0,698779</td>
<td>0,986418</td>
<td>0,998899</td>
<td>0,650593</td>
<td>0,0024507</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>REG 38 F</td>
<td>0,000135</td>
<td>1,000000</td>
<td>0,981130</td>
<td>0,000135</td>
<td>0,999223</td>
<td>0,973292</td>
<td>1,000000</td>
<td>0,986418</td>
<td>0,999834</td>
<td>0,997955</td>
<td>1,000000</td>
<td>0,009223</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>REG 43 F</td>
<td>0,000135</td>
<td>0,982468</td>
<td>1,000000</td>
<td>0,000135</td>
<td>0,650593</td>
<td>0,358938</td>
<td>0,998899</td>
<td>0,426679</td>
<td>1,000000</td>
<td>0,990756</td>
<td>0,999834</td>
<td>0,0024507</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>REG 44 F</td>
<td>0,000135</td>
<td>0,973774</td>
<td>0,512922</td>
<td>0,000135</td>
<td>1,000000</td>
<td>1,000000</td>
<td>0,985859</td>
<td>0,837352</td>
<td>0,997955</td>
<td>0,586055</td>
<td>0,000221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>REG 47 F</td>
<td>0,000135</td>
<td>0,007330</td>
<td>0,090550</td>
<td>0,000135</td>
<td>0,000256</td>
<td>0,000159</td>
<td>0,000543</td>
<td>0,000171</td>
<td>0,024507</td>
<td>0,002647</td>
<td>0,000221</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REG – jedinec vzniklý regenerací protoplastových kultur, F – genotypy, u kterých proběhla fúze protoplastů
Obrázek 37: Viabilita pylových zrn stanovená barvením Lugolovým roztokem; a) *S. bulbocastanum* REG 5 (4n); b) somatický hybrid REG 43 F (4n)

6.6.4 Orientační stanovení obsahu solaninu a chaconinu v hlízách

Všechny somatické hybridy vytvářely kulovitooválné hlízy se žlutou slupkou, fialovými očky a žlutou dužninou (Obrázek 38). Senzorickým hodnocením bylo zjištěno, že hlízy měly nahořklou chuť, která je pravděpodobně způsobena vyšším obsahem alkaloidů v hlízách. Z tohoto důvodu bylo provedeno orientační stanovení obsahu dvou glykoalkaloidů α – solaninu a α – chaconinu, pro které jsou stanoveny hygienické limity. V tabulce 21 jsou uvedeny výsledky hodnocení a na obrázcích 39 a 40 výstupy v podobě grafů z kapalinového chromatografu. Nejdůležitější parametr je celkový obsah obou glykoalkaloidů obsažený v čerstvé hmotě hlíz i se slupkou, který by neměl u brambor přesáhnout 200 mg.kg$^{-1}$ (Rayburn et al., 1995).

Z výsledků je patrné, že genotypy druhu *S. bulbocastanum*, diploidní *S. blb* 17 a tetraploidní REG 5, měly nízkou hladinu hodnocených glykoalkaloidů, což se shoduje s výsledky Savarese et al. (2009) a Distl a Wink (2009). Zdá se tedy, že stupeň ploidie nemá vliv na expresi genů podílejících se na biosyntéze α – solaninu a α - chaconinu. Při hodnocení obsahu α – solaninu byly detekovány ještě další dva výraznější píky příslušící pravděpodobně jiným glykoalkaloidům, které nebyly bliži identifikovány (Obrázek 39). Jejich koncentrace v hlízách však byla poměrně nízká, což koresponduje se závěry Shakya a Navarre (2008), že *S. bulbocastanum* obsahuje široké spektrum solanidinových a solanidinu podobných alkaloidů.

Všechny somatické hybridy měly vyšší obsah solaninu a chaconinu, který byl srovnatelný s dihaploidem DH 165. Ve třech případech (REG 34 F, 35 F a 43 F) byl obsah
dokonce nadlimitní. Z výsledků vyplývá, že obsah α – solaninu a α – chaconinu u somatických hybridů je dominantní vlastnost zděděná po S. tuberosum ssp. tuberosum.

Vzhledem k tomu, že hořkou chuť hlíz vykazovaly z rodičovských komponent pouze genotypy druhu S. bulbocastanum, je tato vlastnost u somatických hybridů způsobena pravděpodobně vyšším obsahem jiných typů glykoalkaloidů, zděděných po druhu S. bulbocastanum, které nebyly metodou kapalinové chromatografie diagnostikovány.

Vyšší hladina solaninu a chaconinu však není limitujícím faktorem při novošlechtění bramboru. Křížením somatických hybridů s genotypy bramboru s nízkým obsahem glykoalkaloidů lze koncentrace těchto látek v hlízách výrazně snižovat.

Obrázek 38: Hlíza somatického hybrida REG 43 F

Tabulka 21: Hodnoty obsahu solaninu a chaconinu v hlízách

<table>
<thead>
<tr>
<th>Genotyp</th>
<th>Chaconin [mg.kg⁻¹]</th>
<th>Solanin [mg.kg⁻¹]</th>
<th>Celkový obsah GA [mg.kg⁻¹]</th>
<th>Sušina [%]</th>
<th>Obsah [mg.kg⁻¹ sušiny]</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.blb 17</td>
<td>0,3</td>
<td>4,4</td>
<td>4,7</td>
<td>15,86</td>
<td>29,92</td>
</tr>
<tr>
<td>DH 165</td>
<td>86</td>
<td>91</td>
<td>177</td>
<td>18,12</td>
<td>974,19</td>
</tr>
<tr>
<td>REG 35F</td>
<td>118</td>
<td>144</td>
<td>263</td>
<td>17,86</td>
<td>1 472,33</td>
</tr>
<tr>
<td>REG 30F</td>
<td>73</td>
<td>82</td>
<td>155</td>
<td>22,17</td>
<td>697,82</td>
</tr>
<tr>
<td>REG 44F</td>
<td>63</td>
<td>82</td>
<td>145</td>
<td>17,84</td>
<td>813,39</td>
</tr>
<tr>
<td>REG 38F</td>
<td>69</td>
<td>84</td>
<td>153</td>
<td>24,21</td>
<td>631,74</td>
</tr>
<tr>
<td>REG 43F</td>
<td>91</td>
<td>141</td>
<td>232</td>
<td>18,86</td>
<td>1 229,31</td>
</tr>
<tr>
<td>REG 34F</td>
<td>91</td>
<td>142</td>
<td>233</td>
<td>17,92</td>
<td>1 301,73</td>
</tr>
<tr>
<td>REG 5</td>
<td>91</td>
<td>142</td>
<td>233</td>
<td>17,92</td>
<td>1 301,73</td>
</tr>
</tbody>
</table>

Obrázek 39: Souhrnná analýza obsahu solaninu a chaconinu u genotypu *Solanum bulbocastanum* PIS 61 metodou kapalinové chromatografie. Největší peak interpretuje celkový obsah solaninu a chaconinu v hlízách v čerstvém stavu.
Obrázek 40: Souhrnná analýza obsahu solaninu a chaconinu u genotypu somatického hybridu REG 44 F metodou kapalinové chromatografie. Největší peak interpretuje celkový obsah solaninu a chaconinu v hlízách v čerstvém stavu.
7 ZÁVĚR

Závěry jsou shrnuty v několika bodech.

- Všechny použité metody infekčních testů rostlin a izolace a kultivace protoplastových kultur se ukázaly jako vhodné pro výběr rostlinného materiálu určeného pro somatickou hybridizaci bramboru s cílem zvýšení odolnosti k Phytophthora infestans. Tyto metody jsou obecně aplikovatelné na další genetické zdroje rodu Solanum.

- Výsledky infekčních testů mohou být zatíženy hlavně vlivem působení kultivačních podmínek, množství inokula, momentálního fyziologického stavu rostliny a virulencí respektive rasovým spektrem inokula.

- Metody molekulární analýzy DNA jsou při dodržení uvedených podmínek vhodné pro předběžnou detekci somatických hybridů bramboru. Zvláštní pozornost lze věnovat studiu nekódujících oblastí mitochondriální a zejména chloroplastové DNA, jejichž vysoká evoluční konzervovanost umožňuje mimo jiné analyzovat fylogenetické vztahy mezi jednotlivými druhy z čeledi Solanaceae.

- Byly získány somatické hybridy mezi genotypy Solanum bulbocastanum PIS 66 a dihaploidem Solanum tuberosum ssp. tuberosum 165 a dále mezi genotypy Solanum bulbocastanum PIS 60 a dihaploidem Solanum tuberosum ssp. tuberosum 387. Tento výsledek byl potvrzen metodami detekce stupně ploidie a analýzami DNA. V morfologicko – anatomické analýze vykazovala většina znaků rysy přechodného charakteru. U některých znaků, jako například typ uspořádání květní koruny, zbarvení vnitřní části květů tzv. hvězdy a barva slupky hlíz se projevila úplná dominance.
Z pohledu vybraných hospodářské důležitých vlastností se somatické hybridy zdají být perspektivním výchozím šlechtitelským materiálem pro tvorbu nových odrůd bramboru. Limitujícími faktory však mohou být některé prezygotické (viabilita pylových zrn a vajíček) a postzygotické bariéry (Endosperm Balance Number), na které je možné narazit při zpětném nasycovacím křížení s kulturním bramborem *Solanum tuberosum* ssp. *tuberosum*. Dalším problémem je snaha šlechtitelů o co nejrychlejší a nejefektivnější produkci nových odrůd. Mezidruhové křížení prodlužuje šlechtění o dalších několik let. Z hlediska rezistentního šlechtění se jeví metoda somatické hybridizace vedle GMO jako perspektivní při získávání genotypů s polygenní rezistencí.
8 **PŘEHLED CITOVANÉ LITERATURY**

Distl, M., Wink, M. 2009. Identification and Quantification of Steroidal Alkaloids from Wild Tuber-Bearing *Solanum* Species by HPLC and LC-ESI-MS. Potato Research, 52, 79 – 104.

Doleţal, P. 2006. Uplatnění fungicidů a fungicidních sledů proti plísni bramboru a vznik rezistence u patogena. Disertační práce, ČZU v Praze, 120 s.

El-Kharbotly, A., Palomino-Sánchez, C., Salamini, F., Jacobsen, E., Gebhardt, C. 1996. R6 and R7 alleles of potato conferring race-specific resistance to Phytophthora infestans (Mont.) de Bary identified genetic loci clustering with the R3 locus on chromosome XI. Theoretical and applied genetics 92 (7), 880–884.

Gichner, T., Mukherjee, A., Velemínský, J. 2006. DNA staining with the fluorochromes EtBr, DAPI and YOYO-1 in the comet assay with tobacco plants after treatment with ethyl methanesulphonate, hyperthermia and DNase-I. Mutation Research, 605, 17–21.

Griffith, G. W., Shaw, D. S. 1998. Polymorphisms in *Phytophthora infestans*: Four Mitochondrial Haplotypes Are Detected after PCR Amplification of DNA from Pure Cultures or from Host Lesions. Applied and Environmental Microbiology, 64 (10), 4007 – 4014.

Leonards-Schippers, C., Gieffers, W., Salamini, F., Gebhardt, Ch. 1992. The R1 gene conferring race specific resistance to Phytophthora infestans in potato is located on potato chromosome V. Molecular and general genetics 233, 278-283.

Mazáková, J. 2008. Determinace pohlavních typů A1, A2 a hladiny rezistence k systémovým fungicidům u populací patogena *Phytophthora infestans* v ČR. Disertační práce, ČZU v Praze, s. 92.

Śliwka, J., Jakuczun, H., Lebecka, R., Marczewski, W., Gebhardt, C., Zimnoch-Guzowska, E. 2006. The novel, major locus *Rpi-phul* for late blight resistance maps to potato chromosome IX and is not correlated with long vegetation period. Theoretical and Applied Genetics, 113, 685 – 695.

Yamagishi, H., Terachi, T. 2003. Multiple origins of cultivated radishes as evidenced by comparsion of the structural variations in mitochondrial DNA of Raphanus. Genome, 46, 89 - 94.

8.1 Citace internetových publikací

8.2 Internetové databáze

The European Cultivated Potato Database, Velká Británie. http://www.europotato.org
9 PŘÍLOHY

Příloha 1: Druhy rodu Solanum: S. bulbocastanum, S. microdontum, S. pinnatisectum a S. polyadenium
Příloha 2: Druhy rodu Solanum: S. berthaultii, dihaploid S. tuberosum ssp. tuberosum, S. vernei a S. verrucosum
Příloha 3: Chemické složení roztoků pro izolaci, kultivaci a regeneraci protoplastových kultur modifikovaných dle Cheng a Saunders (1995)

<table>
<thead>
<tr>
<th>Složení</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₄NO₃</td>
<td>1650</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1650</td>
</tr>
<tr>
<td>KNO₃</td>
<td>1900</td>
<td>950</td>
<td>1900</td>
<td>950</td>
<td>950</td>
<td>1900</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>170</td>
<td>85</td>
<td>170</td>
<td>85</td>
<td>85</td>
<td>270</td>
</tr>
<tr>
<td>MgSO₄ · 7H₂O</td>
<td>370</td>
<td>185</td>
<td>370</td>
<td>185</td>
<td>185</td>
<td>370</td>
</tr>
<tr>
<td>CaCl₂ · 2H₂O</td>
<td>440</td>
<td>660</td>
<td>1320</td>
<td>660</td>
<td>660</td>
<td>440</td>
</tr>
<tr>
<td>Na₂EDTA</td>
<td>37,3</td>
<td>18,65</td>
<td>37,3</td>
<td>18,65</td>
<td>18,65</td>
<td>37,3</td>
</tr>
<tr>
<td>FeSO₄ · 7H₂O</td>
<td>27,8</td>
<td>13,9</td>
<td>27,8</td>
<td>13,9</td>
<td>13,9</td>
<td>27,8</td>
</tr>
<tr>
<td>MnSO₄ · 4H₂O</td>
<td>22,3</td>
<td>11,15</td>
<td>22,3</td>
<td>11,15</td>
<td>11,15</td>
<td>22,3</td>
</tr>
<tr>
<td>ZnSO₄ · 7H₂O</td>
<td>10,6</td>
<td>5,3</td>
<td>10,6</td>
<td>5,3</td>
<td>5,3</td>
<td>10,6</td>
</tr>
<tr>
<td>H₂BO₃</td>
<td>6,2</td>
<td>3,1</td>
<td>6,2</td>
<td>3,1</td>
<td>3,1</td>
<td>6,2</td>
</tr>
<tr>
<td>KI</td>
<td>0,83</td>
<td>0,415</td>
<td>0,83</td>
<td>0,415</td>
<td>0,415</td>
<td>0,83</td>
</tr>
<tr>
<td>Na₂MoO₄ · 2H₂O</td>
<td>0,25</td>
<td>0,125</td>
<td>0,25</td>
<td>0,125</td>
<td>0,125</td>
<td>0,25</td>
</tr>
<tr>
<td>CoCl₂ · 6H₂O</td>
<td>0,025</td>
<td>0,013</td>
<td>0,026</td>
<td>0,013</td>
<td>0,013</td>
<td>0,025</td>
</tr>
<tr>
<td>CuSO₄ · 5H₂O</td>
<td>0,025</td>
<td>0,013</td>
<td>0,026</td>
<td>0,013</td>
<td>0,013</td>
<td>0,025</td>
</tr>
<tr>
<td>Glycin</td>
<td>2,0</td>
<td>2,0</td>
<td>4,0</td>
<td>2,0</td>
<td>2,0</td>
<td>2,0</td>
</tr>
<tr>
<td>Nikotinová kyselina</td>
<td>0,5</td>
<td>0,5</td>
<td>1,0</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>Pyridoxin</td>
<td>0,5</td>
<td>0,5</td>
<td>1,0</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>Thiamin</td>
<td>1,0</td>
<td>10,0</td>
<td>20,0</td>
<td>10,0</td>
<td>10,0</td>
<td>1,0</td>
</tr>
<tr>
<td>Inositol</td>
<td>100,0</td>
<td>100,0</td>
<td>200,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
</tr>
<tr>
<td>Kasein hydrolyzát</td>
<td>250,0</td>
<td>-</td>
<td>500,0</td>
<td>250,0</td>
<td>250,0</td>
<td>250,0</td>
</tr>
<tr>
<td>Glutamin</td>
<td>-</td>
<td>-</td>
<td>200,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
</tr>
<tr>
<td>Adenin sulfát</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100,0</td>
</tr>
<tr>
<td>Sacharóza</td>
<td>20g</td>
<td>-</td>
<td>20g</td>
<td>10g</td>
<td>10g</td>
<td>10g</td>
</tr>
<tr>
<td>Glukóza</td>
<td>-</td>
<td>18g</td>
<td>60g</td>
<td>30g</td>
<td>30g</td>
<td>-</td>
</tr>
<tr>
<td>Mannitol</td>
<td>-</td>
<td>73g</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sorbitol</td>
<td>-</td>
<td>-</td>
<td>14,4g</td>
<td>50g</td>
<td>50g</td>
<td>30g</td>
</tr>
<tr>
<td>PVP</td>
<td>-</td>
<td>5g</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MES</td>
<td>-</td>
<td>1g</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IAA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,01</td>
</tr>
<tr>
<td>NAA</td>
<td>-</td>
<td>-</td>
<td>2,5</td>
<td>1,25</td>
<td>1,25</td>
<td>-</td>
</tr>
<tr>
<td>2, 4-D</td>
<td>-</td>
<td>-</td>
<td>0,5</td>
<td>0,25</td>
<td>0,25</td>
<td>-</td>
</tr>
<tr>
<td>Zeatin</td>
<td>-</td>
<td>-</td>
<td>2,0</td>
<td>1,0</td>
<td>1,0</td>
<td>3,0</td>
</tr>
<tr>
<td>GA₃</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,5</td>
</tr>
<tr>
<td>Agar</td>
<td>7g</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Phytageal</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2g</td>
<td>2g</td>
<td>-</td>
</tr>
<tr>
<td>LGT agaróza</td>
<td>-</td>
<td>-</td>
<td>8g</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>pH</td>
<td>5,7</td>
<td>5,7</td>
<td>5,7</td>
<td>5,7</td>
<td>5,7</td>
<td>5,7</td>
</tr>
</tbody>
</table>
Příloha 4: a) protoplasty před čištěním; b) test viability; c) Bürkerova počítací komůrka; d) prstenec nativních protoplastů
Příloha 5: a) Phytophthora infestans; b) infekční testy in vitro rostlin; c) infekční testy metodou listových terčíků; d) detail nekrózy na listu
Příloha 6: a) elektroporátor BTX; b) Petriho miska s fúzní komorou; c) řetízkování protoplastů; d) fúzované protoplasty 15 minut po elektrofúzi
Příloha 7: Izolace DNA pomocí DNeasy Plant Mini Kit (Qiagen, SRN)

- Předehřát vodní lázeň na teplotu 65°C. Odvážit 100 mg rostlinného materiálu. Vzorek vložit do mikrozkumavky o objemu 2 ml, ponořit do tekutého dusíku a rozdrtit skleněnou tyčinkou.
- K homogenizovanému vzorku přidat 400 μl Buffer AP1 a 4 μl RNasy A a směs důkladně protřepat na vibrační třepačce.
- Vzorek inkubovat 10 minut ve vodní lázni předehřáté na 65°C. V průběhu inkubace vzorek 2-3x opatrně promíchat.
- K lyzátu přidat 130 μl Buffer AP2, promíchat a vzorek na 5 minut umístit do mrazíčího boxu při teplotě –20°C (dochází k vyšrážení proteinů a polysacharidů).
- Obsah zkumavky přenést do QIAshedder Mini Spin zkumavky (fialová barva) a centrifugovat maximální rychlostí (13 500 otáček . minuta⁻¹) 2 minuty.
- Supernatant přelít do nové 2 ml zkumavky, přidat 675 μl Buffer AP3/E a pipetou promíchat.
- Přenést 650 μl vzorku do DNeasy Mini Spin zkumavky (bílá barva) a centrifugovat 1 minutu při rychlosti 8000 otáček . minuta⁻¹. Totéž provést se zbývající částí vzorku.
- DNeasy Mini Spin zkumavku (filtr) vložit do nové 2 ml zkumavky a přidat 500 μl promývacího roztoku Buffer AW. Do pufru byl předtím přidán ethanol. Centrifugovat 1 minutu při rychlosti 8000 otáček . minuta⁻¹. Odlít supernatant.
- Přidat 500 μl Buffer AW, centrifugovat maximální rychlostí (13 500 otáček . minuta⁻¹) 2 minuty. Supernatant odlít.
- Propláchnout kolonu 200 μl neředěného ethanolu a následně centrifugovat po dobu 2 minut při stejných otáčkách. Mezitím nahřát pufr AE (TE).
- Přenést DNeasy Mini Spin zkumavku (filtr) do nové 2 ml zkumavky a přidat 100 μl Buffer AE (1xTE pufr), inkubovat při laboratorní teplotě 5 minut. Centrifugovat 1 minutu při rychlosti 8000 otáček . minuta⁻¹.
- Opakovat předchozí krok.
- Fáze prošlá kolonou obsahuje DNA.
Příloha 8: Koncentrace uvolněných protoplastů z 1 g navážky z mezofylu listů při působení cellulolytických enzymů

<table>
<thead>
<tr>
<th>Hodiny od začátku inkubace</th>
<th>Koncentrace protoplastů genotypu R7 [ks.ml⁻¹]</th>
<th>Diference R7</th>
<th>Koncentrace protoplastů genotypu R11 [ks.ml⁻¹]</th>
<th>Diference R11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 106 256,5</td>
<td>-</td>
<td>1 528 978,5</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>3 595 022,5</td>
<td>2 488 766,0</td>
<td>3 752 606,0</td>
<td>2 223 627,5</td>
</tr>
<tr>
<td>3</td>
<td>6 982 233,0</td>
<td>3 387 211,0</td>
<td>9 311 833,3</td>
<td>5 559 227,3</td>
</tr>
<tr>
<td>4</td>
<td>9 194 746,0</td>
<td>2 212 513,0</td>
<td>11 257 818,0</td>
<td>1 945 984,7</td>
</tr>
<tr>
<td>5</td>
<td>11 821 638,4</td>
<td>2 626 892,0</td>
<td>15 774 704,7</td>
<td>4 516 886,7</td>
</tr>
<tr>
<td>6</td>
<td>13 135 292,1</td>
<td>1 313 654,0</td>
<td>18 207 227,2</td>
<td>2 432 522,5</td>
</tr>
<tr>
<td>7</td>
<td>13 964 880,8</td>
<td>829 588,7</td>
<td>18 554 551,8</td>
<td>347 324,6</td>
</tr>
<tr>
<td>8</td>
<td>16 038 852,4</td>
<td>2 073 972,0</td>
<td>18 971 508,0</td>
<td>416 956,2</td>
</tr>
<tr>
<td>9</td>
<td>16 453 646,7</td>
<td>414 794,3</td>
<td>20 639 332,9</td>
<td>1 667 824,9</td>
</tr>
<tr>
<td>10</td>
<td>17 075 838,2</td>
<td>622 191,5</td>
<td>20 847 811,0</td>
<td>208 488,1</td>
</tr>
<tr>
<td>11</td>
<td>17 905 426,9</td>
<td>829 588,7</td>
<td>27 310 632,4</td>
<td>6 462 821,4</td>
</tr>
</tbody>
</table>
Příloha 9: Výsledky hodnocení růstových parametrů rostlin při charakterizaci vlivu složení kultivačních médií

<table>
<thead>
<tr>
<th>Druh</th>
<th>Médium</th>
<th>Alar 85 [mg.l⁻¹]</th>
<th>AgNO₃ [mg.l⁻¹]</th>
<th>Průměrná délka jedné rostliny [cm]</th>
<th>Průměrný počet listů na jednu rostlinu</th>
<th>Průměrná hmotnost jedné rostliny [g]</th>
<th>Průměrná hmotnost sušiny jedné rostliny [g]</th>
<th>Sušina [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. verrucosum 299</td>
<td>SH</td>
<td>0</td>
<td>0</td>
<td>10,20</td>
<td>11,80</td>
<td>0,2907</td>
<td>0,0237</td>
<td>8,15</td>
</tr>
<tr>
<td>S. verrucosum 299</td>
<td>SH</td>
<td>1</td>
<td>1,5</td>
<td>8,67</td>
<td>10,50</td>
<td>0,4639</td>
<td>0,0387</td>
<td>8,34</td>
</tr>
<tr>
<td>S. verrucosum 299</td>
<td>SH</td>
<td>5</td>
<td>7,5</td>
<td>8,68</td>
<td>13,33</td>
<td>0,5356</td>
<td>0,0414</td>
<td>7,73</td>
</tr>
<tr>
<td>S. verrucosum 299</td>
<td>MS</td>
<td>0</td>
<td>0</td>
<td>9,60</td>
<td>14,00</td>
<td>0,2670</td>
<td>0,0199</td>
<td>7,45</td>
</tr>
<tr>
<td>S. verrucosum 299</td>
<td>MS</td>
<td>1</td>
<td>1,5</td>
<td>7,13</td>
<td>10,33</td>
<td>0,3493</td>
<td>0,0261</td>
<td>7,47</td>
</tr>
<tr>
<td>S. verrucosum 299</td>
<td>MS</td>
<td>5</td>
<td>7,5</td>
<td>3,43</td>
<td>6,50</td>
<td>0,2355</td>
<td>0,0219</td>
<td>9,30</td>
</tr>
<tr>
<td>S. verrucosum 299</td>
<td>CH</td>
<td>0</td>
<td>0</td>
<td>7,55</td>
<td>11,17</td>
<td>0,2983</td>
<td>0,0202</td>
<td>6,77</td>
</tr>
<tr>
<td>S. verrucosum 299</td>
<td>CH</td>
<td>1</td>
<td>1,5</td>
<td>7,42</td>
<td>8,83</td>
<td>0,3470</td>
<td>0,0249</td>
<td>7,18</td>
</tr>
<tr>
<td>S. verrucosum 299</td>
<td>CH</td>
<td>5</td>
<td>7,5</td>
<td>6,17</td>
<td>11,67</td>
<td>0,5342</td>
<td>0,0459</td>
<td>8,59</td>
</tr>
<tr>
<td>S. berthaultii 260</td>
<td>SH</td>
<td>0</td>
<td>0</td>
<td>4,65</td>
<td>9,17</td>
<td>0,2373</td>
<td>0,0202</td>
<td>8,51</td>
</tr>
<tr>
<td>S. berthaultii 260</td>
<td>SH</td>
<td>1</td>
<td>1,5</td>
<td>6,67</td>
<td>10,67</td>
<td>0,5135</td>
<td>0,0342</td>
<td>6,66</td>
</tr>
<tr>
<td>S. berthaultii 260</td>
<td>SH</td>
<td>5</td>
<td>7,5</td>
<td>2,50</td>
<td>7,83</td>
<td>0,1522</td>
<td>0,0150</td>
<td>9,86</td>
</tr>
<tr>
<td>S. berthaultii 260</td>
<td>MS</td>
<td>0</td>
<td>0</td>
<td>4,15</td>
<td>10,17</td>
<td>0,1781</td>
<td>0,0216</td>
<td>12,13</td>
</tr>
<tr>
<td>S. berthaultii 260</td>
<td>MS</td>
<td>1</td>
<td>1,5</td>
<td>4,18</td>
<td>8,83</td>
<td>0,1879</td>
<td>0,0154</td>
<td>8,20</td>
</tr>
<tr>
<td>S. berthaultii 260</td>
<td>MS</td>
<td>5</td>
<td>7,5</td>
<td>3,55</td>
<td>8,17</td>
<td>0,3649</td>
<td>0,0300</td>
<td>8,22</td>
</tr>
<tr>
<td>S. berthaultii 260</td>
<td>CH</td>
<td>0</td>
<td>0</td>
<td>4,10</td>
<td>10,83</td>
<td>0,2996</td>
<td>0,0314</td>
<td>10,48</td>
</tr>
<tr>
<td>S. berthaultii 260</td>
<td>CH</td>
<td>1</td>
<td>1,5</td>
<td>3,55</td>
<td>8,67</td>
<td>0,1615</td>
<td>0,0150</td>
<td>9,17</td>
</tr>
<tr>
<td>S. berthaultii 260</td>
<td>CH</td>
<td>5</td>
<td>7,5</td>
<td>1,88</td>
<td>5,67</td>
<td>0,1957</td>
<td>0,0188</td>
<td>9,61</td>
</tr>
<tr>
<td>S. bulbocastanum 54</td>
<td>SH</td>
<td>0</td>
<td>0</td>
<td>14,50</td>
<td>16,80</td>
<td>0,3054</td>
<td>0,0218</td>
<td>7,14</td>
</tr>
<tr>
<td>S. bulbocastanum 54</td>
<td>SH</td>
<td>1</td>
<td>1,5</td>
<td>14,12</td>
<td>17,33</td>
<td>0,3720</td>
<td>0,0385</td>
<td>10,35</td>
</tr>
<tr>
<td>S. bulbocastanum 54</td>
<td>SH</td>
<td>5</td>
<td>7,5</td>
<td>6,78</td>
<td>21,50</td>
<td>0,2636</td>
<td>0,0238</td>
<td>9,03</td>
</tr>
<tr>
<td>S. bulbocastanum 54</td>
<td>MS</td>
<td>0</td>
<td>0</td>
<td>13,60</td>
<td>24,00</td>
<td>0,2849</td>
<td>0,0300</td>
<td>10,54</td>
</tr>
<tr>
<td>S. bulbocastanum 54</td>
<td>MS</td>
<td>1</td>
<td>1,5</td>
<td>7,95</td>
<td>25,33</td>
<td>0,3744</td>
<td>0,0428</td>
<td>11,43</td>
</tr>
<tr>
<td>S. bulbocastanum 54</td>
<td>MS</td>
<td>5</td>
<td>7,5</td>
<td>2,83</td>
<td>20,17</td>
<td>0,2389</td>
<td>0,0250</td>
<td>10,47</td>
</tr>
<tr>
<td>S. bulbocastanum 54</td>
<td>CH</td>
<td>0</td>
<td>0</td>
<td>9,083</td>
<td>25,00</td>
<td>0,2625</td>
<td>0,0298</td>
<td>11,35</td>
</tr>
<tr>
<td>S. bulbocastanum 54</td>
<td>CH</td>
<td>1</td>
<td>1,5</td>
<td>9,13</td>
<td>35,50</td>
<td>0,4063</td>
<td>0,0302</td>
<td>7,43</td>
</tr>
<tr>
<td>S. bulbocastanum 54</td>
<td>CH</td>
<td>5</td>
<td>7,5</td>
<td>4,13</td>
<td>31,00</td>
<td>0,4162</td>
<td>0,0336</td>
<td>8,07</td>
</tr>
</tbody>
</table>
Příloha 10: Výsledky hodnocení parametrů izolace protoplastů rostlin při charakterizaci vlivu složení kultivačních médií

<table>
<thead>
<tr>
<th>Druh</th>
<th>Médium</th>
<th>Alar 85 [mg.l(^{-1})]</th>
<th>AgNO(_3) [mg.l(^{-1})]</th>
<th>Hmotnost navážky celkem [g]</th>
<th>Hmotnost navážky listů [g]</th>
<th>Koncentrace protoplastů v 1 ml</th>
<th>Koncentrace protoplastů v 1 ml na 1g navážky listů</th>
<th>Víability [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. verrucosum 299</td>
<td>SH</td>
<td>0</td>
<td>0</td>
<td>1,1365</td>
<td>0,2329</td>
<td>75000</td>
<td>322027</td>
<td>55,56</td>
</tr>
<tr>
<td>S. verrucosum 299</td>
<td>SH</td>
<td>1</td>
<td>1,5</td>
<td>3,191</td>
<td>1,2864</td>
<td>81250</td>
<td>63161</td>
<td>53,66</td>
</tr>
<tr>
<td>S. verrucosum 299</td>
<td>SH</td>
<td>5</td>
<td>7,5</td>
<td>0,5292</td>
<td>0,057</td>
<td>100000</td>
<td>1754386</td>
<td>87,5</td>
</tr>
<tr>
<td>S. verrucosum 299</td>
<td>MS</td>
<td>0</td>
<td>0</td>
<td>1,1694</td>
<td>0,2365</td>
<td>179000</td>
<td>7568710</td>
<td>65,6</td>
</tr>
<tr>
<td>S. verrucosum 299</td>
<td>MS</td>
<td>1</td>
<td>1,5</td>
<td>1,0968</td>
<td>0,5226</td>
<td>1275000</td>
<td>2439725</td>
<td>78,57</td>
</tr>
<tr>
<td>S. verrucosum 299</td>
<td>MS</td>
<td>5</td>
<td>7,5</td>
<td>0,84</td>
<td>0,2526</td>
<td>262500</td>
<td>1039192</td>
<td>97,96</td>
</tr>
<tr>
<td>S. verrucosum 299</td>
<td>CH</td>
<td>0</td>
<td>0</td>
<td>1,038</td>
<td>0,222</td>
<td>1990000</td>
<td>8963964</td>
<td>71,43</td>
</tr>
<tr>
<td>S. verrucosum 299</td>
<td>CH</td>
<td>1</td>
<td>1,5</td>
<td>0,9384</td>
<td>0,117</td>
<td>593750</td>
<td>5074786</td>
<td>83,28</td>
</tr>
<tr>
<td>S. verrucosum 299</td>
<td>CH</td>
<td>5</td>
<td>7,5</td>
<td>0,7002</td>
<td>0,0726</td>
<td>306250</td>
<td>4218320</td>
<td>95,84</td>
</tr>
<tr>
<td>S. berthaultii 260</td>
<td>SH</td>
<td>0</td>
<td>0</td>
<td>1,5144</td>
<td>0,3048</td>
<td>Pod 50000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. berthaultii 260</td>
<td>SH</td>
<td>1</td>
<td>1,5</td>
<td>1,6572</td>
<td>1,0266</td>
<td>156250</td>
<td>152201</td>
<td>75</td>
</tr>
<tr>
<td>S. berthaultii 260</td>
<td>MS</td>
<td>0</td>
<td>0</td>
<td>1,839</td>
<td>0,7398</td>
<td>Pod 50000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. berthaultii 260</td>
<td>MS</td>
<td>1</td>
<td>1,5</td>
<td>1,4196</td>
<td>0,462</td>
<td>93750</td>
<td>202922</td>
<td>42,86</td>
</tr>
<tr>
<td>S. berthaultii 260</td>
<td>MS</td>
<td>5</td>
<td>7,5</td>
<td>0,666</td>
<td>0,1068</td>
<td>Pod 50000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. berthaultii 260</td>
<td>CH</td>
<td>0</td>
<td>0</td>
<td>0,6414</td>
<td>0,2568</td>
<td>Pod 50000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. berthaultii 260</td>
<td>CH</td>
<td>1</td>
<td>1,5</td>
<td>0,8088</td>
<td>0,3006</td>
<td>81250</td>
<td>270293</td>
<td>50</td>
</tr>
<tr>
<td>S. berthaultii 260</td>
<td>CH</td>
<td>5</td>
<td>7,5</td>
<td>0,9828</td>
<td>0,0774</td>
<td>Pod 50000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. bulbocastanum 54</td>
<td>SH</td>
<td>0</td>
<td>0</td>
<td>0,771</td>
<td>0,039</td>
<td>3125000</td>
<td>80128205</td>
<td>92,37</td>
</tr>
<tr>
<td>S. bulbocastanum 54</td>
<td>SH</td>
<td>1</td>
<td>1,5</td>
<td>1,2576</td>
<td>0,1812</td>
<td>2956250</td>
<td>16314846</td>
<td>91,75</td>
</tr>
<tr>
<td>S. bulbocastanum 54</td>
<td>SH</td>
<td>5</td>
<td>7,5</td>
<td>0,5424</td>
<td>0,1086</td>
<td>462500</td>
<td>4258748</td>
<td>87,95</td>
</tr>
<tr>
<td>S. bulbocastanum 54</td>
<td>MS</td>
<td>0</td>
<td>0</td>
<td>0,4734</td>
<td>0,744</td>
<td>1280000</td>
<td>1720430</td>
<td>88,95</td>
</tr>
<tr>
<td>S. bulbocastanum 54</td>
<td>MS</td>
<td>1</td>
<td>1,5</td>
<td>1,0398</td>
<td>0,2466</td>
<td>981250</td>
<td>3979116</td>
<td>69,23</td>
</tr>
<tr>
<td>S. bulbocastanum 54</td>
<td>MS</td>
<td>5</td>
<td>7,5</td>
<td>0,5706</td>
<td>0,1476</td>
<td>Pod 50000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. bulbocastanum 54</td>
<td>CH</td>
<td>0</td>
<td>0</td>
<td>1,1796</td>
<td>0,4374</td>
<td>3625000</td>
<td>8287609</td>
<td>87,02</td>
</tr>
<tr>
<td>S. bulbocastanum 54</td>
<td>CH</td>
<td>1</td>
<td>1,5</td>
<td>0,6618</td>
<td>0,2568</td>
<td>93750</td>
<td>365070</td>
<td>85,91</td>
</tr>
<tr>
<td>S. bulbocastanum 54</td>
<td>CH</td>
<td>5</td>
<td>7,5</td>
<td>1,422</td>
<td>0,3048</td>
<td>425000</td>
<td>1394357</td>
<td>90,74</td>
</tr>
</tbody>
</table>
Příloha 11: Výsledky infekčních testů metodou listových terčíků

<table>
<thead>
<tr>
<th>Genotyp</th>
<th>Průměrné poškození listové plochy [%]</th>
<th>Odolnost metody listových terčíků</th>
<th>Odolnost in vitro rostlin (VÚB)</th>
<th>Shoda</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB PIS 1</td>
<td>52,00</td>
<td>N</td>
<td>N</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 2</td>
<td>56,00</td>
<td>N</td>
<td>N</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 3</td>
<td>47,50</td>
<td>S</td>
<td>S</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 4</td>
<td>26,00</td>
<td>S</td>
<td>S</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 5</td>
<td>56,67</td>
<td>N</td>
<td>S</td>
<td>ne</td>
</tr>
<tr>
<td>SB PIS 6</td>
<td>63,33</td>
<td>N</td>
<td>O</td>
<td>ne*</td>
</tr>
<tr>
<td>SB PIS 7</td>
<td>71,00</td>
<td>N</td>
<td>N</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 8</td>
<td>21,00</td>
<td>O</td>
<td>S</td>
<td>ne</td>
</tr>
<tr>
<td>SB PIS 9</td>
<td>49,20</td>
<td>S</td>
<td>S</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 10</td>
<td>56,00</td>
<td>N</td>
<td>N</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 11</td>
<td>51,00</td>
<td>N</td>
<td>N</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 12</td>
<td>20,00</td>
<td>O</td>
<td>O</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 13</td>
<td>8,33</td>
<td>O</td>
<td>O</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 14</td>
<td>15,00</td>
<td>O</td>
<td>O</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 15</td>
<td>23,75</td>
<td>O</td>
<td>O</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 17</td>
<td>0,00</td>
<td>O</td>
<td>O</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 18</td>
<td>2,00</td>
<td>O</td>
<td>N</td>
<td>ne*</td>
</tr>
<tr>
<td>SB PIS 19</td>
<td>48,00</td>
<td>S</td>
<td>S</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 20</td>
<td>35,00</td>
<td>S</td>
<td>S</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 21</td>
<td>35,00</td>
<td>S</td>
<td>O</td>
<td>ne</td>
</tr>
<tr>
<td>SB PIS 22</td>
<td>15,33</td>
<td>O</td>
<td>S</td>
<td>ne</td>
</tr>
<tr>
<td>SB PIS 23</td>
<td>0,00</td>
<td>O</td>
<td>O</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 24</td>
<td>15,00</td>
<td>O</td>
<td>O</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 25</td>
<td>66,00</td>
<td>N</td>
<td>O</td>
<td>ne*</td>
</tr>
<tr>
<td>SB PIS 26</td>
<td>39,00</td>
<td>S</td>
<td>S</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 27</td>
<td>53,00</td>
<td>N</td>
<td>N</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 29</td>
<td>63,33</td>
<td>N</td>
<td>N</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 30</td>
<td>13,33</td>
<td>O</td>
<td>O</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 32</td>
<td>84,00</td>
<td>N</td>
<td>O</td>
<td>ne*</td>
</tr>
<tr>
<td>SB PIS 33</td>
<td>7,00</td>
<td>O</td>
<td>O</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 34</td>
<td>23,33</td>
<td>O</td>
<td>O</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 35</td>
<td>32,00</td>
<td>S</td>
<td>O</td>
<td>ne</td>
</tr>
<tr>
<td>SB PIS 36</td>
<td>35,00</td>
<td>S</td>
<td>O</td>
<td>ne</td>
</tr>
<tr>
<td>SB PIS 37</td>
<td>40,00</td>
<td>S</td>
<td>O</td>
<td>ne</td>
</tr>
<tr>
<td>SB PIS 38</td>
<td>33,33</td>
<td>S</td>
<td>S</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 39</td>
<td>23,33</td>
<td>O</td>
<td>O</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 40</td>
<td>2,20</td>
<td>O</td>
<td>O</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 41</td>
<td>0,00</td>
<td>O</td>
<td>S</td>
<td>ne</td>
</tr>
<tr>
<td>SB PIS 44</td>
<td>16,67</td>
<td>O</td>
<td>O</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 45</td>
<td>96,67</td>
<td>N</td>
<td>O</td>
<td>ne*</td>
</tr>
<tr>
<td>SB PIS 46</td>
<td>6,00</td>
<td>O</td>
<td>S</td>
<td>ne</td>
</tr>
<tr>
<td>SB PIS 47</td>
<td>19,00</td>
<td>O</td>
<td>O</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 48</td>
<td>98,00</td>
<td>N</td>
<td>O</td>
<td>ne*</td>
</tr>
<tr>
<td>SB PIS 49</td>
<td>12,00</td>
<td>O</td>
<td>S</td>
<td>ne</td>
</tr>
<tr>
<td>SB PIS 50</td>
<td>22,00</td>
<td>O</td>
<td>O</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 51</td>
<td>10,00</td>
<td>O</td>
<td>S</td>
<td>ne</td>
</tr>
<tr>
<td>SB PIS 53</td>
<td>26,67</td>
<td>S</td>
<td>S</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 54</td>
<td>13,00</td>
<td>O</td>
<td>O</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 55</td>
<td>43,00</td>
<td>S</td>
<td>S</td>
<td>ANO</td>
</tr>
<tr>
<td>Genotyp</td>
<td>Průměrné poškození listové plochy [%]</td>
<td>Odolnost metoda listových terčíků</td>
<td>Odolnost in vitro rostlin (VÚB)</td>
<td>Shoda</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------------------------</td>
<td>-----------------------------------</td>
<td>--------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>SB PIS 56</td>
<td>76,00</td>
<td>N</td>
<td>N</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 57</td>
<td>30,00</td>
<td>S</td>
<td>N</td>
<td>ne</td>
</tr>
<tr>
<td>SB PIS 59</td>
<td>0,00</td>
<td>O</td>
<td>S</td>
<td>ne</td>
</tr>
<tr>
<td>SB PIS 60</td>
<td>8,33</td>
<td>O</td>
<td>O</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 61</td>
<td>47,00</td>
<td>S</td>
<td>S</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 62</td>
<td>52,50</td>
<td>N</td>
<td>N</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 63</td>
<td>49,00</td>
<td>S</td>
<td>S</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 64</td>
<td>27,00</td>
<td>S</td>
<td>S</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 65</td>
<td>73,00</td>
<td>N</td>
<td>S</td>
<td>ne</td>
</tr>
<tr>
<td>SB PIS 66</td>
<td>13,33</td>
<td>O</td>
<td>O</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 67</td>
<td>51,00</td>
<td>S</td>
<td>S</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 68</td>
<td>29,20</td>
<td>S</td>
<td>S</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 70</td>
<td>0,00</td>
<td>O</td>
<td>O</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 71</td>
<td>23,00</td>
<td>O</td>
<td>O</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 72</td>
<td>68,00</td>
<td>N</td>
<td>N</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 73</td>
<td>6,67</td>
<td>O</td>
<td>O</td>
<td>ANO</td>
</tr>
<tr>
<td>SB PIS 75</td>
<td>2,00</td>
<td>O</td>
<td>N</td>
<td>ne*</td>
</tr>
<tr>
<td>SB PL 7</td>
<td>45,00</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SB PL 10</td>
<td>79,67</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SB PL 11</td>
<td>100,00</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SB PL 19</td>
<td>50,00</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SB HB 263</td>
<td>6,67</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SB HB 267</td>
<td>46,67</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SB HB 270</td>
<td>100,00</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SB HB 309</td>
<td>53,00</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SB HB 310</td>
<td>41,67</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SB HB 313</td>
<td>83,33</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. BER 031</td>
<td>21,67</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. BER 033</td>
<td>10,30</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. BER 233</td>
<td>10,00</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. BER 251</td>
<td>1,00</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. BER 252</td>
<td>6,67</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. BER 254</td>
<td>5,00</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. BER 255</td>
<td>45,00</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. BER 256</td>
<td>6,67</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. BER 257</td>
<td>8,33</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. BER 259</td>
<td>3,33</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. BER 260</td>
<td>0,00</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. BER 261</td>
<td>29,67</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. VERN 068</td>
<td>56,67</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. VERN 234</td>
<td>11,67</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. VERU 299</td>
<td>9,00</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. MICRO 049</td>
<td>26,67</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. PINN 051</td>
<td>99,33</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. ? 052</td>
<td>0,00</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

O – odolná S – středně náchylná N – náchylná

* – extrémní neshoda
Příloha 12: Regenerace protoplastových kultur: a) 12. den; b) 14. den; c) 20. den; d) 70. den; e) 145. den a f) 165. den kultivace
Příloha 13: a) *S. bulbocastanum* 66; b) dihaploid *S. tuberosum* ssp. *tuberosum* 165; c) somatické hybridy vzniklé jejich fúzí; d) a e) somatický hybrid REG 28 starý 14 a 30 dnů
Příloha 14: Charakterizace 25 parametrů u rostlin v polním pokusu pomocí klasifikátoru pro rod *Solanum* (Vidner et al., 1987)

<table>
<thead>
<tr>
<th>Znak</th>
<th>S. bbl 17</th>
<th>S. bbl 61</th>
<th>REG 5</th>
<th>REG 9</th>
<th>REG 28 F</th>
<th>REG 29 F</th>
<th>REG 30 F</th>
<th>REG 31 F</th>
<th>REG 32 F</th>
<th>REG 34 F</th>
<th>REG 35 F</th>
<th>REG 36</th>
<th>REG 38 F</th>
<th>REG 40 F</th>
<th>REG 43 F</th>
<th>REG 44 F</th>
<th>REG 46 F</th>
<th>REG 47 F</th>
<th>REG 48 F</th>
<th>REG 67 F</th>
<th>REG 69 F</th>
<th>REG 72 F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ trsu</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Tvar trsu</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Výška rostliny</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Vzpřímenost stonku</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>9</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Větvení stonku</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Tloušťka stonku</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Barva stonku</td>
<td>5</td>
</tr>
<tr>
<td>Počet stonků na rostlinu</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1/7</td>
<td></td>
</tr>
<tr>
<td>Tvar listu</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Počet párů základních listků</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Tvar bočních listků</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>x</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>x</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Výskyt lístecích</td>
<td>1</td>
</tr>
<tr>
<td>Členitost listu</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>x</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>x</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Povrch listu</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Velikost listu</td>
<td>3</td>
<td>3</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Barva listu</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Lesk listu</td>
<td>5</td>
</tr>
<tr>
<td>Postavení článku květní stopky</td>
<td>x</td>
<td>7</td>
<td>3</td>
<td>x</td>
<td>2</td>
</tr>
<tr>
<td>Anthokyanová barva květní stopky</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>x</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Dvoukorunka</td>
<td>1</td>
</tr>
<tr>
<td>Průměr korunky</td>
<td>x</td>
<td>3</td>
<td>3</td>
<td>x</td>
<td>8</td>
<td>5</td>
<td>5</td>
<td>x</td>
<td>6</td>
<td>8</td>
<td>7</td>
<td>x</td>
<td>5</td>
<td>x</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Barva korunky</td>
<td>1 smet.</td>
<td>1 smet.</td>
<td>1 smet.</td>
<td>1 smet.</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
<td>x</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
<td>x</td>
<td>1/6</td>
<td>x</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
</tr>
<tr>
<td>Projev květenství</td>
<td>3-4</td>
<td>4</td>
<td>5</td>
<td>3-4</td>
<td>8</td>
<td>8-9</td>
<td>7</td>
<td>1</td>
<td>7</td>
<td>8-9</td>
<td>7</td>
<td>1</td>
<td>8-9</td>
<td>5</td>
<td>8-9</td>
<td>8-9</td>
<td>8-9</td>
<td>5</td>
<td>7</td>
<td>8-9</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Shazování poupat</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>x</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Bobule</td>
<td>1</td>
</tr>
</tbody>
</table>

Počet stonků na rostlinu: 1 - sadba rostliny převedené z *in vitro* podmíněk do skleníku, 7 - sadba hůlky o velikosti 3 – 6 cm
Barva korunky: 1/6 – bilomodrá

172
<table>
<thead>
<tr>
<th>Znak</th>
<th>Hodnocení</th>
<th>Stupnice</th>
<th>Znak</th>
<th>Hodnocení</th>
<th>Stupnice</th>
<th>Znak</th>
<th>Hodnocení</th>
<th>Stupnice</th>
<th>Znak</th>
<th>Hodnocení</th>
<th>Stupnice</th>
<th>Znak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tvar trsu</td>
<td>Slabé načervenalá</td>
<td>1</td>
<td>Slabě načervenalá</td>
<td>1</td>
<td>Čarkovitě</td>
<td>>5,0</td>
<td>1</td>
<td>Dvoukorunka</td>
<td>Nevyskytuje se</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barva stonku</td>
<td>Modrofialová</td>
<td>2</td>
<td>Úzce kopinaté</td>
<td>5,0 – 4,1</td>
<td>2</td>
<td>Kopinatě</td>
<td>4,0 – 3,1</td>
<td>3</td>
<td>Průměr koruny</td>
<td>Větší měsíc</td>
<td><5mm</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Červenohnědá</td>
<td>3</td>
<td>Šíře kopinaté</td>
<td>3,0 – 2,1</td>
<td>4</td>
<td>Siroce oválné</td>
<td>2,0 – 1,9</td>
<td>5</td>
<td></td>
<td>Malý</td>
<td>8 – 11</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Červená</td>
<td>4</td>
<td>Úzce oválné</td>
<td>2,0</td>
<td>5</td>
<td>Ostře oválné</td>
<td>1,8 – 1,7</td>
<td>6</td>
<td></td>
<td>Střední</td>
<td>12 – 15</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Modrofialově žíhaná</td>
<td>5</td>
<td>Eliptické</td>
<td>1,4</td>
<td>7</td>
<td>Široce oválné</td>
<td>1,6</td>
<td>7</td>
<td></td>
<td>Velký</td>
<td>16 – 19</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Tmavoželená</td>
<td>6</td>
<td>Okrouhlé</td>
<td><1,2</td>
<td>8</td>
<td>Eliptické</td>
<td>1</td>
<td>8</td>
<td></td>
<td>Velmi velký</td>
<td>20 – 23</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Želená</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zeleně žíhaná</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Typ trsu</td>
<td>Tlustý</td>
<td>8</td>
<td>Tvar bočních listků (délka : šířka)</td>
<td>Tvar listu</td>
<td>Okrouhlý</td>
<td>1</td>
<td>Velmi výš</td>
<td>7,0</td>
<td>1</td>
<td>Barva listu</td>
<td>Šedožloutená</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Tenký</td>
<td>9</td>
<td>Čarkovitě</td>
<td>>5,0</td>
<td>1</td>
<td>V horní 1/4</td>
<td>7</td>
<td>1</td>
<td></td>
<td>Velmi hojně</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Úzce kopinaté</td>
<td>5,0 – 4,1</td>
<td>2</td>
<td>V horní 1/3</td>
<td>3</td>
<td>1</td>
<td></td>
<td>Extrémně hojně</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kopinatě</td>
<td>4,0 – 3,1</td>
<td>3</td>
<td>Ve středu</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Široce oválné</td>
<td>3,0 – 2,1</td>
<td>4</td>
<td>V dolní 1/3</td>
<td>7</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ostře oválné</td>
<td>2,0</td>
<td>5</td>
<td>V dolní 1/4</td>
<td>9</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Eliptické</td>
<td>1,4</td>
<td>7</td>
<td>Chybě</td>
<td>1</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Příloha 15: Výsledky měření délky svěracích buněk průduchů a stanovení počtu chloroplastů u somatického hybrida REG 34 F (4n)

<table>
<thead>
<tr>
<th>Číslo průduchu</th>
<th>Počet chloroplastů</th>
<th>Délka průduchu [µm]</th>
<th>Počet chloroplastů</th>
<th>Délka průduchu [µm]</th>
<th>Počet chloroplastů</th>
<th>Délka průduchu [µm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26</td>
<td>33,4</td>
<td>18</td>
<td>34,0</td>
<td>23</td>
<td>35,9</td>
</tr>
<tr>
<td>2</td>
<td>26</td>
<td>34,6</td>
<td>24</td>
<td>37,4</td>
<td>21</td>
<td>32,4</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>30,0</td>
<td>19</td>
<td>32,8</td>
<td>21</td>
<td>33,4</td>
</tr>
<tr>
<td>4</td>
<td>21</td>
<td>28,1</td>
<td>18</td>
<td>31,5</td>
<td>24</td>
<td>34,6</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>30,0</td>
<td>21</td>
<td>35,0</td>
<td>20</td>
<td>33,7</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>26,0</td>
<td>20</td>
<td>34,3</td>
<td>22</td>
<td>34,6</td>
</tr>
<tr>
<td>7</td>
<td>26</td>
<td>37,4</td>
<td>26</td>
<td>40,2</td>
<td>20</td>
<td>34,6</td>
</tr>
<tr>
<td>8</td>
<td>27</td>
<td>40,0</td>
<td>21</td>
<td>32,8</td>
<td>22</td>
<td>33,4</td>
</tr>
<tr>
<td>9</td>
<td>21</td>
<td>27,1</td>
<td>22</td>
<td>36,8</td>
<td>21</td>
<td>33,4</td>
</tr>
<tr>
<td>10</td>
<td>24</td>
<td>36,2</td>
<td>21</td>
<td>36,2</td>
<td>18</td>
<td>30,6</td>
</tr>
<tr>
<td>11</td>
<td>24</td>
<td>36,0</td>
<td>20</td>
<td>34,6</td>
<td>20</td>
<td>30,6</td>
</tr>
<tr>
<td>12</td>
<td>23</td>
<td>33,0</td>
<td>21</td>
<td>34,6</td>
<td>18</td>
<td>31,5</td>
</tr>
<tr>
<td>13</td>
<td>27</td>
<td>35,3</td>
<td>21</td>
<td>34,0</td>
<td>21</td>
<td>35,3</td>
</tr>
<tr>
<td>14</td>
<td>19</td>
<td>34,0</td>
<td>26</td>
<td>40,2</td>
<td>12</td>
<td>31,2</td>
</tr>
<tr>
<td>15</td>
<td>22</td>
<td>39,3</td>
<td>20</td>
<td>32,6</td>
<td>21</td>
<td>34,6</td>
</tr>
<tr>
<td>16</td>
<td>21</td>
<td>30,0</td>
<td>29</td>
<td>41,2</td>
<td>21</td>
<td>35,3</td>
</tr>
<tr>
<td>17</td>
<td>24</td>
<td>32,1</td>
<td>20</td>
<td>33,7</td>
<td>24</td>
<td>39,0</td>
</tr>
<tr>
<td>18</td>
<td>21</td>
<td>32,1</td>
<td>19</td>
<td>27,5</td>
<td>20</td>
<td>35,6</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>34,0</td>
<td>19</td>
<td>32,4</td>
<td>18</td>
<td>34,9</td>
</tr>
<tr>
<td>20</td>
<td>22</td>
<td>30,0</td>
<td>21</td>
<td>32,4</td>
<td>21</td>
<td>37,8</td>
</tr>
<tr>
<td>21</td>
<td>31</td>
<td>38,4</td>
<td>18</td>
<td>34,3</td>
<td>23</td>
<td>37,1</td>
</tr>
<tr>
<td>22</td>
<td>25</td>
<td>38,7</td>
<td>20</td>
<td>34,3</td>
<td>18</td>
<td>30,9</td>
</tr>
<tr>
<td>23</td>
<td>20</td>
<td>32,8</td>
<td>18</td>
<td>31,8</td>
<td>21</td>
<td>35,6</td>
</tr>
<tr>
<td>24</td>
<td>20</td>
<td>25,0</td>
<td>20</td>
<td>32,4</td>
<td>19</td>
<td>34,0</td>
</tr>
<tr>
<td>25</td>
<td>21</td>
<td>33,1</td>
<td>18</td>
<td>33,7</td>
<td>23</td>
<td>36,0</td>
</tr>
<tr>
<td>26</td>
<td>27</td>
<td>36,2</td>
<td>20</td>
<td>36,5</td>
<td>23</td>
<td>36,8</td>
</tr>
<tr>
<td>27</td>
<td>19</td>
<td>24,3</td>
<td>22</td>
<td>39,3</td>
<td>23</td>
<td>36,2</td>
</tr>
<tr>
<td>28</td>
<td>19</td>
<td>30,9</td>
<td>18</td>
<td>34,0</td>
<td>23</td>
<td>34,3</td>
</tr>
<tr>
<td>29</td>
<td>29</td>
<td>37,1</td>
<td>26</td>
<td>42,1</td>
<td>21</td>
<td>35,0</td>
</tr>
<tr>
<td>30</td>
<td>22</td>
<td>31,2</td>
<td>21</td>
<td>35,3</td>
<td>23</td>
<td>34,0</td>
</tr>
</tbody>
</table>
Příloha 16: Výsledky měření délky svěracích buněk průduchů a stanovení počtu chloroplastů u genotypu Solanum bulbocastanum PIS 17 (2n)

<table>
<thead>
<tr>
<th>Číslo průduchu</th>
<th>Počet chloroplastů</th>
<th>Délka průduchu [µm]</th>
<th>Počet chloroplastů</th>
<th>Délka průduchu [µm]</th>
<th>Počet chloroplastů</th>
<th>Délka průduchu [µm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
<td>20,0</td>
<td>14</td>
<td>24,0</td>
<td>16</td>
<td>25,6</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>16,0</td>
<td>13</td>
<td>24,0</td>
<td>10</td>
<td>22,4</td>
</tr>
<tr>
<td>3</td>
<td>19</td>
<td>23,2</td>
<td>12</td>
<td>24,8</td>
<td>15</td>
<td>25,6</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>18,4</td>
<td>14</td>
<td>24,8</td>
<td>13</td>
<td>25,6</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>16,8</td>
<td>12</td>
<td>25,6</td>
<td>13</td>
<td>24,0</td>
</tr>
<tr>
<td>6</td>
<td>16</td>
<td>20,8</td>
<td>12</td>
<td>22,4</td>
<td>15</td>
<td>27,2</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>20,8</td>
<td>16</td>
<td>20,8</td>
<td>13</td>
<td>25,6</td>
</tr>
<tr>
<td>8</td>
<td>15</td>
<td>20,0</td>
<td>16</td>
<td>27,2</td>
<td>14</td>
<td>27,2</td>
</tr>
<tr>
<td>9</td>
<td>14</td>
<td>20,8</td>
<td>16</td>
<td>32,0</td>
<td>12</td>
<td>27,2</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>20,0</td>
<td>13</td>
<td>22,4</td>
<td>10</td>
<td>24,0</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>20,0</td>
<td>10</td>
<td>24,0</td>
<td>11</td>
<td>24,0</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>19,2</td>
<td>13</td>
<td>22,4</td>
<td>14</td>
<td>24,0</td>
</tr>
<tr>
<td>13</td>
<td>16</td>
<td>22,4</td>
<td>14</td>
<td>24,8</td>
<td>16</td>
<td>27,2</td>
</tr>
<tr>
<td>14</td>
<td>12</td>
<td>24,0</td>
<td>11</td>
<td>24,0</td>
<td>16</td>
<td>28,8</td>
</tr>
<tr>
<td>15</td>
<td>13</td>
<td>18,4</td>
<td>14</td>
<td>28,8</td>
<td>13</td>
<td>28,8</td>
</tr>
<tr>
<td>16</td>
<td>12</td>
<td>20,0</td>
<td>14</td>
<td>26,4</td>
<td>13</td>
<td>24,0</td>
</tr>
<tr>
<td>17</td>
<td>12</td>
<td>15,2</td>
<td>13</td>
<td>19,2</td>
<td>15</td>
<td>27,2</td>
</tr>
<tr>
<td>18</td>
<td>10</td>
<td>19,2</td>
<td>14</td>
<td>24,0</td>
<td>14</td>
<td>25,6</td>
</tr>
<tr>
<td>19</td>
<td>12</td>
<td>19,2</td>
<td>13</td>
<td>24,8</td>
<td>14</td>
<td>27,2</td>
</tr>
<tr>
<td>20</td>
<td>12</td>
<td>18,4</td>
<td>11</td>
<td>25,6</td>
<td>17</td>
<td>25,6</td>
</tr>
<tr>
<td>21</td>
<td>17</td>
<td>22,4</td>
<td>12</td>
<td>27,2</td>
<td>13</td>
<td>24,0</td>
</tr>
<tr>
<td>22</td>
<td>10</td>
<td>17,6</td>
<td>11</td>
<td>27,2</td>
<td>13</td>
<td>28,8</td>
</tr>
<tr>
<td>23</td>
<td>11</td>
<td>20,0</td>
<td>13</td>
<td>25,6</td>
<td>13</td>
<td>30,4</td>
</tr>
<tr>
<td>24</td>
<td>12</td>
<td>17,6</td>
<td>16</td>
<td>25,6</td>
<td>16</td>
<td>25,6</td>
</tr>
<tr>
<td>25</td>
<td>14</td>
<td>22,4</td>
<td>13</td>
<td>27,2</td>
<td>12</td>
<td>27,2</td>
</tr>
<tr>
<td>26</td>
<td>10</td>
<td>16,0</td>
<td>12</td>
<td>27,2</td>
<td>11</td>
<td>25,6</td>
</tr>
<tr>
<td>27</td>
<td>10</td>
<td>20,0</td>
<td>14</td>
<td>25,6</td>
<td>11</td>
<td>23,2</td>
</tr>
<tr>
<td>28</td>
<td>15</td>
<td>21,6</td>
<td>13</td>
<td>25,6</td>
<td>16</td>
<td>27,2</td>
</tr>
<tr>
<td>29</td>
<td>17</td>
<td>24,0</td>
<td>14</td>
<td>27,2</td>
<td>12</td>
<td>23,2</td>
</tr>
<tr>
<td>30</td>
<td>11</td>
<td>17,6</td>
<td>12</td>
<td>26,4</td>
<td>16</td>
<td>25,6</td>
</tr>
</tbody>
</table>
Příloha 17: Výsledky měření délky svěracích buněk průduchů a stanovení počtu chloroplastů u dihaploidního genotypu *Solanum tuberosum* ssp. *tuberosum* DH 387 (2n)

<table>
<thead>
<tr>
<th>Číslo průduchu</th>
<th>Počet chloroplastů</th>
<th>Délka průduchu [µm]</th>
<th>Počet chloroplastů</th>
<th>Délka průduchu [µm]</th>
<th>Počet chloroplastů</th>
<th>Délka průduchu [µm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>27,2</td>
<td>9</td>
<td>19,2</td>
<td>14</td>
<td>24,0</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>22,4</td>
<td>12</td>
<td>22,4</td>
<td>14</td>
<td>24,0</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>22,4</td>
<td>13</td>
<td>27,2</td>
<td>13</td>
<td>24,0</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>22,4</td>
<td>13</td>
<td>23,2</td>
<td>11</td>
<td>22,4</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>24,0</td>
<td>11</td>
<td>20,8</td>
<td>13</td>
<td>24,0</td>
</tr>
<tr>
<td>6</td>
<td>17</td>
<td>25,6</td>
<td>10</td>
<td>18,4</td>
<td>13</td>
<td>28,8</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>19,2</td>
<td>14</td>
<td>25,6</td>
<td>11</td>
<td>22,4</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>21,6</td>
<td>13</td>
<td>32,0</td>
<td>13</td>
<td>27,2</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>22,4</td>
<td>11</td>
<td>28,8</td>
<td>16</td>
<td>28,8</td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td>25,6</td>
<td>13</td>
<td>20,8</td>
<td>12</td>
<td>26,4</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>25,6</td>
<td>12</td>
<td>19,2</td>
<td>17</td>
<td>28,0</td>
</tr>
<tr>
<td>12</td>
<td>20</td>
<td>32,0</td>
<td>12</td>
<td>22,4</td>
<td>13</td>
<td>24,0</td>
</tr>
<tr>
<td>13</td>
<td>11</td>
<td>19,2</td>
<td>13</td>
<td>28,8</td>
<td>12</td>
<td>21,6</td>
</tr>
<tr>
<td>14</td>
<td>13</td>
<td>20,8</td>
<td>11</td>
<td>22,4</td>
<td>13</td>
<td>27,2</td>
</tr>
<tr>
<td>15</td>
<td>13</td>
<td>19,2</td>
<td>13</td>
<td>28,8</td>
<td>12</td>
<td>25,6</td>
</tr>
<tr>
<td>16</td>
<td>14</td>
<td>25,6</td>
<td>13</td>
<td>23,2</td>
<td>13</td>
<td>25,6</td>
</tr>
<tr>
<td>17</td>
<td>10</td>
<td>20,8</td>
<td>14</td>
<td>24,0</td>
<td>13</td>
<td>24,0</td>
</tr>
<tr>
<td>18</td>
<td>13</td>
<td>21,6</td>
<td>13</td>
<td>21,6</td>
<td>13</td>
<td>24,8</td>
</tr>
<tr>
<td>19</td>
<td>13</td>
<td>26,4</td>
<td>14</td>
<td>20,8</td>
<td>12</td>
<td>27,2</td>
</tr>
<tr>
<td>20</td>
<td>12</td>
<td>25,6</td>
<td>13</td>
<td>26,4</td>
<td>14</td>
<td>26,4</td>
</tr>
<tr>
<td>21</td>
<td>13</td>
<td>19,2</td>
<td>14</td>
<td>23,2</td>
<td>13</td>
<td>22,4</td>
</tr>
<tr>
<td>22</td>
<td>13</td>
<td>20,8</td>
<td>15</td>
<td>27,2</td>
<td>11</td>
<td>23,2</td>
</tr>
<tr>
<td>23</td>
<td>17</td>
<td>23,2</td>
<td>14</td>
<td>32,0</td>
<td>11</td>
<td>22,4</td>
</tr>
<tr>
<td>24</td>
<td>14</td>
<td>23,2</td>
<td>13</td>
<td>28,8</td>
<td>11</td>
<td>24,0</td>
</tr>
<tr>
<td>25</td>
<td>15</td>
<td>20,8</td>
<td>12</td>
<td>27,2</td>
<td>13</td>
<td>28,8</td>
</tr>
<tr>
<td>26</td>
<td>12</td>
<td>19,2</td>
<td>14</td>
<td>25,6</td>
<td>13</td>
<td>24,0</td>
</tr>
<tr>
<td>27</td>
<td>13</td>
<td>22,4</td>
<td>14</td>
<td>31,2</td>
<td>15</td>
<td>25,6</td>
</tr>
<tr>
<td>28</td>
<td>14</td>
<td>23,2</td>
<td>11</td>
<td>26,4</td>
<td>10</td>
<td>20,8</td>
</tr>
<tr>
<td>29</td>
<td>13</td>
<td>25,6</td>
<td>13</td>
<td>25,6</td>
<td>13</td>
<td>27,2</td>
</tr>
<tr>
<td>30</td>
<td>13</td>
<td>27,2</td>
<td>15</td>
<td>28,8</td>
<td>12</td>
<td>24,0</td>
</tr>
</tbody>
</table>
Příloha 18: Výsledky měření délky svěracích buněk průduchů a stanovení počtu chloroplastů u genotypu *Solanum tuberosum* ssp. *tuberosum* R10 (4n)

<table>
<thead>
<tr>
<th>Číslo průduchu</th>
<th>Počet chloroplastů</th>
<th>Délka průduchu [µm]</th>
<th>Počet chloroplastů</th>
<th>Délka průduchu [µm]</th>
<th>Počet chloroplastů</th>
<th>Délka průduchu [µm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17</td>
<td>32,0</td>
<td>21</td>
<td>41,6</td>
<td>29</td>
<td>43,2</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>32,0</td>
<td>20</td>
<td>32,0</td>
<td>18</td>
<td>35,2</td>
</tr>
<tr>
<td>3</td>
<td>22</td>
<td>35,2</td>
<td>20</td>
<td>33,6</td>
<td>18</td>
<td>33,6</td>
</tr>
<tr>
<td>4</td>
<td>21</td>
<td>33,6</td>
<td>21</td>
<td>30,4</td>
<td>19</td>
<td>27,2</td>
</tr>
<tr>
<td>5</td>
<td>22</td>
<td>35,2</td>
<td>19</td>
<td>28,8</td>
<td>18</td>
<td>33,6</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>30,4</td>
<td>21</td>
<td>36,8</td>
<td>19</td>
<td>33,6</td>
</tr>
<tr>
<td>7</td>
<td>22</td>
<td>28,8</td>
<td>21</td>
<td>33,6</td>
<td>26</td>
<td>43,2</td>
</tr>
<tr>
<td>8</td>
<td>31</td>
<td>41,6</td>
<td>24</td>
<td>33,6</td>
<td>22</td>
<td>35,2</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>32,0</td>
<td>26</td>
<td>40,0</td>
<td>19</td>
<td>35,2</td>
</tr>
<tr>
<td>10</td>
<td>26</td>
<td>38,4</td>
<td>18</td>
<td>30,4</td>
<td>21</td>
<td>30,4</td>
</tr>
<tr>
<td>11</td>
<td>21</td>
<td>25,6</td>
<td>22</td>
<td>35,2</td>
<td>28</td>
<td>40,0</td>
</tr>
<tr>
<td>12</td>
<td>23</td>
<td>32,0</td>
<td>21</td>
<td>35,2</td>
<td>20</td>
<td>38,4</td>
</tr>
<tr>
<td>13</td>
<td>32</td>
<td>40,0</td>
<td>17</td>
<td>32,0</td>
<td>19</td>
<td>28,8</td>
</tr>
<tr>
<td>14</td>
<td>20</td>
<td>35,2</td>
<td>21</td>
<td>32,0</td>
<td>26</td>
<td>43,2</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>28,8</td>
<td>21</td>
<td>35,2</td>
<td>25</td>
<td>40,0</td>
</tr>
<tr>
<td>16</td>
<td>27</td>
<td>36,8</td>
<td>34</td>
<td>51,2</td>
<td>20</td>
<td>30,4</td>
</tr>
<tr>
<td>17</td>
<td>30</td>
<td>40,0</td>
<td>19</td>
<td>32,0</td>
<td>23</td>
<td>35,2</td>
</tr>
<tr>
<td>18</td>
<td>31</td>
<td>40,0</td>
<td>21</td>
<td>33,6</td>
<td>21</td>
<td>40,0</td>
</tr>
<tr>
<td>19</td>
<td>22</td>
<td>32,0</td>
<td>21</td>
<td>33,6</td>
<td>23</td>
<td>36,8</td>
</tr>
<tr>
<td>20</td>
<td>28</td>
<td>38,4</td>
<td>18</td>
<td>32,0</td>
<td>23</td>
<td>32,0</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>33,6</td>
<td>20</td>
<td>35,2</td>
<td>22</td>
<td>32,0</td>
</tr>
<tr>
<td>22</td>
<td>20</td>
<td>30,4</td>
<td>21</td>
<td>35,2</td>
<td>20</td>
<td>33,6</td>
</tr>
<tr>
<td>23</td>
<td>15</td>
<td>24,0</td>
<td>20</td>
<td>30,4</td>
<td>25</td>
<td>40,0</td>
</tr>
<tr>
<td>24</td>
<td>27</td>
<td>40,0</td>
<td>19</td>
<td>30,4</td>
<td>21</td>
<td>35,2</td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>35,2</td>
<td>20</td>
<td>35,2</td>
<td>25</td>
<td>33,6</td>
</tr>
<tr>
<td>26</td>
<td>24</td>
<td>33,6</td>
<td>26</td>
<td>36,8</td>
<td>24</td>
<td>28,8</td>
</tr>
<tr>
<td>27</td>
<td>21</td>
<td>32,0</td>
<td>23</td>
<td>36,8</td>
<td>24</td>
<td>38,4</td>
</tr>
<tr>
<td>28</td>
<td>22</td>
<td>32,0</td>
<td>21</td>
<td>30,4</td>
<td>25</td>
<td>33,6</td>
</tr>
<tr>
<td>29</td>
<td>26</td>
<td>32,0</td>
<td>19</td>
<td>32,0</td>
<td>23</td>
<td>32,0</td>
</tr>
<tr>
<td>30</td>
<td>27</td>
<td>36,8</td>
<td>20</td>
<td>33,6</td>
<td>22</td>
<td>36,8</td>
</tr>
</tbody>
</table>
Příloha 19: Hodnocení vybraných parametrů hlíz z polního a skleníkového pokusu pomocí klasifikátoru pro rod *Solanum* (Vidner et al., 1987)

<table>
<thead>
<tr>
<th>Genotyp</th>
<th>Tvar</th>
<th>Splošlost</th>
<th>Vzhled</th>
<th>Hloubka oček</th>
<th>Vzhled slupky</th>
<th>Barva slupky</th>
<th>Rozdělení barvy</th>
<th>Barva dužin (v rámci rodu)</th>
<th>Barva dužin (S. tuberosum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. blb 60</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td>x</td>
</tr>
<tr>
<td>S. blb 61</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td>x</td>
</tr>
<tr>
<td>REG 1</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>x</td>
</tr>
<tr>
<td>REG 5</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td>x</td>
</tr>
<tr>
<td>REG 9</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td>x</td>
</tr>
<tr>
<td>REG 11</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>x</td>
</tr>
<tr>
<td>REG 14</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td>x</td>
</tr>
<tr>
<td>REG 16</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td>x</td>
</tr>
<tr>
<td>REG 36</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td>x</td>
</tr>
<tr>
<td>REG 37</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>x</td>
</tr>
<tr>
<td>REG 11</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>x</td>
</tr>
<tr>
<td>DH 165</td>
<td>3</td>
<td>9</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Apta</td>
<td>4</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>DH 387</td>
<td>2</td>
<td>9</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>REG 27 F</td>
<td>4</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>6</td>
<td>x</td>
</tr>
<tr>
<td>REG 28 F</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>4</td>
<td>x</td>
</tr>
<tr>
<td>REG 29 F</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>6</td>
<td>x</td>
</tr>
<tr>
<td>REG 30 F</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>x</td>
</tr>
<tr>
<td>REG 32 F</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>x</td>
</tr>
<tr>
<td>REG 33 F</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>6</td>
<td>x</td>
</tr>
<tr>
<td>REG 34 F</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>6</td>
<td>x</td>
</tr>
<tr>
<td>REG 35 F</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>5</td>
<td>x</td>
</tr>
<tr>
<td>REG 38 F</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>x</td>
</tr>
<tr>
<td>REG 39 F</td>
<td>5</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>5</td>
<td>x</td>
</tr>
<tr>
<td>REG 40 F</td>
<td>6</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>4</td>
<td>x</td>
</tr>
<tr>
<td>REG 41 F</td>
<td>6</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>x</td>
</tr>
<tr>
<td>REG 42 F</td>
<td>4</td>
<td>9</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>5</td>
<td>x</td>
</tr>
<tr>
<td>REG 43 F</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>x</td>
</tr>
<tr>
<td>REG 44 F</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>4</td>
<td>x</td>
</tr>
<tr>
<td>REG 46 F</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>4</td>
<td>x</td>
</tr>
<tr>
<td>REG 47 F</td>
<td>6</td>
<td>9</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>4</td>
<td>x</td>
</tr>
<tr>
<td>REG 48 F</td>
<td>6</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>5</td>
<td>x</td>
</tr>
<tr>
<td>REG 49 F</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>x</td>
</tr>
<tr>
<td>REG 50 F</td>
<td>6</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>x</td>
</tr>
<tr>
<td>REG 51 F</td>
<td>5</td>
<td>9</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>x</td>
</tr>
<tr>
<td>REG 52 F</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>REG 67 F</td>
<td>5</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>5</td>
<td>x</td>
</tr>
<tr>
<td>REG 68 F</td>
<td>6</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>5</td>
<td>x</td>
</tr>
<tr>
<td>REG 69 F</td>
<td>5</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>6</td>
<td>x</td>
</tr>
<tr>
<td>REG 70 F</td>
<td>5</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>5</td>
<td>x</td>
</tr>
<tr>
<td>S. veru 299</td>
<td>8</td>
<td>9</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>6/8</td>
<td>5</td>
<td>6</td>
<td>x</td>
</tr>
</tbody>
</table>
Klasifikátor pro rod *Solanum* (Vidner *et al.*, 1987) pro hodnocené parametry

<table>
<thead>
<tr>
<th>Znak</th>
<th>Hodnocení</th>
<th>Stupnice</th>
<th>Znak</th>
<th>Hodnocení</th>
<th>Stupnice</th>
<th>Znak</th>
<th>Hodnocení</th>
<th>Stupnice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tvar hlíz</td>
<td></td>
<td></td>
<td>Hloubka oček</td>
<td></td>
<td></td>
<td>Barva slupky</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dlouhý</td>
<td>1</td>
<td></td>
<td>Velmi hluboké</td>
<td>1</td>
<td></td>
<td>Tmavošedá</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ledvina, rohlíček</td>
<td>2</td>
<td></td>
<td>Hluboké</td>
<td>3</td>
<td></td>
<td>Šedá</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Dlouze oválný – oválný</td>
<td>3</td>
<td></td>
<td>Střední</td>
<td>5</td>
<td></td>
<td>Světle šedá</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Oválný, dlouze oválný</td>
<td>4</td>
<td></td>
<td>Mělké</td>
<td>7</td>
<td></td>
<td>Světle červená</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Oválný</td>
<td>5</td>
<td></td>
<td>Velmi mělké</td>
<td>9</td>
<td></td>
<td>Červená</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Kulovitooválný, okrouhlooválný</td>
<td>6</td>
<td></td>
<td>Rozpraskaná</td>
<td>1</td>
<td></td>
<td>Růžová</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Okrouhlý</td>
<td>7</td>
<td></td>
<td>Rozbrázděná</td>
<td>2</td>
<td></td>
<td>Žlutohnědá</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Okrouhlokulovitý</td>
<td>8</td>
<td></td>
<td>Korkovitá</td>
<td>3</td>
<td></td>
<td>Bezbavá</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Kulovitý</td>
<td>9</td>
<td></td>
<td>Drsná</td>
<td>4</td>
<td></td>
<td>Jiná</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Zploštělost hlíz</td>
<td></td>
<td></td>
<td>Vzhled slupky</td>
<td></td>
<td></td>
<td>Rozdělení barv slupky</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velmi zploštělá</td>
<td>1</td>
<td></td>
<td>Mírně drsná</td>
<td>5</td>
<td></td>
<td>Neplošné</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Štěrkově zploštělá</td>
<td>3</td>
<td></td>
<td>Šířkovaná</td>
<td>6</td>
<td></td>
<td>Přechodné</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Slabě zploštělá</td>
<td>5</td>
<td></td>
<td>Hladká</td>
<td>9</td>
<td></td>
<td>Plošné</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Ojediněle zploštělá</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plná</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vzhled hlíz</td>
<td></td>
<td></td>
<td>Barva dužnin (Solanum tuberosum)</td>
<td></td>
<td></td>
<td>Barva dužnin (v rámci rodu)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nevzhledné</td>
<td>1</td>
<td></td>
<td>Bílá</td>
<td>1</td>
<td></td>
<td>Tmavožlutá</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Méně vzhledné</td>
<td>3</td>
<td></td>
<td>Slabě nažloutlá</td>
<td>3</td>
<td></td>
<td>Žlutá</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Středně vzhledné</td>
<td>5</td>
<td></td>
<td>Nažloutlá</td>
<td>5</td>
<td></td>
<td>Světle žlutá</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Vzhledné</td>
<td>7</td>
<td></td>
<td>Žlutá</td>
<td>7</td>
<td></td>
<td>Krémová</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Velmi vzhledné</td>
<td>9</td>
<td></td>
<td>Sytě žlutá</td>
<td>9</td>
<td></td>
<td>Bílá</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>